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Abstract: In thoracic radiotherapy, some organs should be consideithdare and protected from undesirable radiation.
Among these organs, the heart is one of the most criticaldtept. Its segmentation from routine CT scans
provides valuable information to assess its position argheh In this paper, we present a novel variational
segmentation method for extracting the heart on non-cein€a& images. To handle the low image contrast
around the cardiac borders, we propose to integrate shaystraimts using Legendre moments and adding
an energy term in the functional to be optimized. Resultsafbole heart segmentation in non-contrast CT
images are presented and comparisons are performed witlahrsggmentations.

1 INTRODUCTION (Foulonneau et al., 2006), and based on the model of
(Mory and Ardon, 2007). Shape information is rep-
In thoracic radiotherapy, some organs should be con-resented using Legendre moments and integrated as
sidered with care and protected from undesirable ra- an additional energy term in the functional to be opti-
diation. Among these organs, the heart is one of the mized. Results for whole heart segmentation on non-
most critical in this context. It is therefore useful contrast CT images are presented and evaluated.
to have a good knowledge of the heart position and
shape, for applications such as dose estimation and
therapy planning. This information can be provided
by image segmentation. Routine examinations rely on
non-contrast CT scans, in which the heart is often dif-
ficult to distinguish from surrounding structures based
on only grey level information. Manual segmentation
is tedious and prone to inter-observer variability, thus
calling for automated methods, we which address in
this paper.
Among the existing approaches, in (Ecabert et al.,
2008) a multi-chamber (i.e. complete heart) mesh
model is deformed to segment the heart on highcon-2  \VVARIATIONAL
trast and high resolution CT images. Unfortunately, SEGMENTATION BASED ON

this method does not apply to non-contrast CT. In
(Moreno et al., 2008), the segmentation is constrained GRAY LEVEL INTENSITY
using fuzzy representations of anatomical knowledge
about the position of the heart in the thorax and with In (Mory and Ardon, 2007), the authors introduced
respect to the lungs. This leads to a good robustnessa fuzzy region competition framework to segment
but to an average similarity index when compared to an imagel into two classes (background and fore-
manual segmentation of 0.74, which might be too lim- ground) based on the minimization of the following
ited for radiotherapy applications. functional:

In this paper, we propose to integrate shape con-
straints into a variational method,following the idea of

Figure 1: Non-contrast CT thoracic images with manual
heart segmentations.
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min  Er(U(d.a) = min /Q\Du\dﬂ it cannot segment different structures having similar
ueBVoy(@ T uesVoy @0 gray level characteristics. An example in 2(c) illus-
regularity O trates the difficulty of separatir_lg the heart from adja-
it (/ UX)re, (X)dQ) cent structures such as the major blood vessels and the
e liver, on non-contrast CT data. In order to overcome
fidelity to the data such limitations, we propose to constrain the segmen-

whereu is a membership function BV 1)(Q) (the tation using shape information.

space of functions of bounded variationg),is a
weighting function of the regularization term in or-
der to relax the regularization near important con- 3 SHAPE CONSTRAINT

tours (for examplg = ﬁ” with I a smooth version

of 1), andx denotes the coordinates triplgt,y, z). Several methods have been proposed to constrain
The functionrg, (X) (i is a set of parameters) could shapes in a segmentation functional. In (Gastaud
have different expressions such as the well known et al., 2004), a distance between a reference and the
Chan and Vese region competition tergc,(x) = observed shapes is used. In (Leventon et al., 2000),
(I —c1)2 — (I — c2)2 wherec; andc; are the meanin- @ PCA analysis is performed on the level sets func-
tensity in each region (Chan and Vese, 2001), or Para-tions of training segmentations. A review of shape
gios and Deriche geodesic active region te(m) = constraint§ for level sets segmentation methods can
In 0oy (Paragios and Deriche, 1999). The formula- be found in (_Cremers et aI._, 200_7). For the fore-
tioFgli‘EZ)Equation 1 leads to several interesting proper- seen appllcatlons for thoramc radiotherapy, we_have
ties: to achieve a compromise between the constraint on
' the shape characterization and the flexibility of the
o using a membership functianinstead of a classi-  representation to cope with inter-patient variability
cal indicator function as in (Chan and Vese, 2001) (patient positioning, heart size,... ). In this contexsit i
leads to a greater stability of the segmentation pro- not relevant to compute directly a difference between
cess and to a better control of the regularity of the a reference shape and the current shape segmentation.
final contours; We prefer to control an indirect match by comparing
our segmentation with a generic shape model repre-
sentation that does constrain natural anatomic vari-
ability, and is not sensitive to translation and scale
variability. Such characteristics can be provided by
well-chosen shape moments. For example in (Rose
o ] ) et al., 2009), Tchebichev moments are used to con-
» as the regularization term is convex, the final re- gyain 4 region growing algorithm, and Foulonneau et
sultis not sensitive to the initialization. al. (Foulonneau et al., 2006) used Legendre moments
In this work, we use the region competition ap- as shape descriptorsin an active contour segmentation
proach, with the same formulation as in Equation 1, framework.Our approach follows a similar scheme as
leading to a fast and flexible segmentation tool to ex- in this last work.
tract the lung cavities and internal blood vessels as
illustrated in Figure 2(a-b). 3.1 Legendre Moments

e as the space of solutions is tiB/ space, the
membership function converges toward an indi-
cator function, and therefore a simple threshold-
ing at the end of the minimization process pro-
vides the final segmentation;

In (Teague, 1980), Teague introduced moments for
one image analysis. He proposes to use Legendre poly-
nomials or Zernike polynomials as kernel functions.
This is motivated by the orthogonality property of
both types of polynomials, which guarantees the non-
redundancy of the description of an image or a shape.
The existence of efficient methods to easily and fastly
Figure 2: Segmentation using the region competition for- compute Legendre moments has guided our prefer-
mulation: (a-b) lungs and lung vessels (c) the heart is not ence for these moments over Zernike ones. Legen-
well separated from the liver and the aorta. dre moments are more sensitive to noise than Zernike
moments, but in our framework we manipulate de-
However, since this approach only relies on in- scriptors only on clean binary masks or membership
tensity discrimination into two classes (or phases), functions defined o0, 1], in a framework of fuzzy
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region competition. Therefore this limitation is not a
drawback for the proposed approach.

Legendre moments are defined by the projection
of a function on a polynomial basis. Liet[—1,1]° —
R be the image representation. The moment of
orderp+q-+ris defined as:

Apgr = Cpqr/[,l 5 Po(X)Py(y)P: (2)1 (X, y,z)dxdydz
’ (@)

whereCpg = GHUEINEH andp B P are Leg-
endre polynomials, defined by the following two or-
der recursive relation:
2p+1

Pp+1(X) = oL Po(X) —
(p>1,Py(x) =1 andPi(x) = X).
Legendre polynomials form an orthogonal basis,

with:
’ _
202 [ romoax={ § {RZE @

Working with a finite number of moments, an es-
timatel of | is given by:

L p g

[(x,y, A erP Par (V)P
(X¥,2) = quZ)Z) p—a.a-rrPo-a(X)Pg—r(Y) ((;)

wherelL is the maximum order for which Legendre
moments are computed.

The computation can be performed with the fast
and exact Hosny method (Hosny, 2007). First, the
spatial image domain is embedded in the cube
[—1,1]3. Assuming that the image hXsx Y x Z vox-

P

p+1pp 1( )

®3)

0
1

els, the centers of voxels are then given by the coordi-

nates(x;,yj,z) such that

X=—-1+(@{—-1/2bxi=1---X andAx:%

yj=—-1+(j—1/2)by j=1---Y anomy:g

Z=—-1+(k—-1/2)Az k=1---Z andAz= %
(6)

Voxels on wich the image intensity is constant

are then defined as intervadld;,Uj 1] x [V;,Vj41] x
[\M;M+l] with
Ui =% —0x/2 Uiy1 =X +0x/2

=Yj—Ly/2 Vj1=yj+4y/2
Wk =2—0z/2 W1 =2%+10;/2

The moment expression computed on the whole
image can then be rewritten as:

L M N
)\p.q‘r = cp‘q.r Zi z
Uil Vi+1 Wk+1
1(%.Yj, 2 / /V /

()

8)
y) P (z)dxdydz

Moreover thanks to the following recursive prim-
itive property of the Legendre polynomes

X Pp1(X) —Pp-1(X)

P (V)dy— P+ p

Jest p(y)dy 2p+1
Legendre moments can be written as:

; 9)

L M N
)\pqr Z yJ) ( )(Xiaijzk) (10)
j=1k=1
wherelp(%) = 2855 [xPy(x) — Pp-1(X)] ** and sim-

ilar expressions folq andl;. The kernellpl I is in-
dependent of the image intensity and can therefore be
precomputed. Moreover the separability property al-
lows us to compute the 3D moments using three 1D
steps.

To guarantee scale and translation invariances,
Legendre moments must be reformulated in the fol-
lowing way:

X—
Aa

X0\, Y—Y0

Aa

P 0P )R (5 )1 xy.2)dxdydz (1)

Aot =C /
par =Cpar |1

where(Xo, Yo,2) are the coordinates of the center of
inertia ofl anda is the volume of the shape.

3.2 Discriminating Volumes by a Finite
Number of L egendre Moments

Two similar shapes have the same set of Legendre
moments and two different shapes have two different
sets of Legendre moments. However, since we work
with scale and translation invariant moments, the set
{A0,0,0,M0,01,A0,1,0,A1,00} iS the same for each shape
and should not be used for discriminating between
shapes. In order to illustrate the discriminative power
of the moments, we consider four classes of shapes:
class 1:heart aloneglass 2:heart and aorta together,
class 3: heart and liver togetheclass 4: heart and
liver and aorta together.

Norm 2 Error. To highlight differences between
Legendre moments of the four classes of shapes, we
compute the squar& norm between two shapes as
||Ashapg — Ashape||3 WhereAshape is @ vector storing
successive Legendre moments of a shape. Comparing
the measures for a finite number of moments from a
mask of a reference heart and objects for the other
classes we obtain the following results (Table 1):
Errors at order 5 are inferior to those at order
15. This is due to the fact that small order moments
represent low frequency shape information. The gap
between moment differneces between hearts and be-
tween hearts and other structures is more important
for order 5 (factor 5) than for order 15 (factor 2). Itis
due to the fact that at order 5, the difference between
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Table 1:¢, norm of the difference between sets of Legendre )
moments between a reference heart shape and 13 maks of [
others hearts, 4 masks of hearts and liver, 4 masks of hearts 0 |
and aorta, 4 masks of hearts and aorta and liver. \J

mean min max

order | ¢ 15 | 5 15| 5 15
refvs BRI T e

otherhearts | 0.17 | 1.21 | 013 | 1.09 | 0.26 | 1.52 Figure 4: PCA on Legendre moments. Result on the first
heart and liver 056 | 240 | 052 | 2.26 | 0.58 | 2.56 two principal axes, “+" heart alone, “o” heart and Iiver, o
heartandaorta | 0.61 | 2.38 | 044 | 213 | 0.69 | 2.50 heart and aorta, “x” heart and liver and aorta.

h
eartandaorta | o | 535 | 045 | 219 | 0.62 | 260
and liver

min /g|Du|dQ+T/ r(x)udQ
’ ueBV(0,1]) JQ o) (12)

Y
S O

< @ o
_ This formulation is quite similar to the one de-

— - scribed in (Foulonneau et al., 2006). However, using
@) (b) (© (d) €) a membership function instead of a level set func-
Figure 3: Examples of mask of: (a) reference heart, (b-c) tion leads to a more stable algorithm. Another differ-
two other hearts, (d) heart and aorta, (€) heart and liver. ence concerns the order of the used moments. Since
one of the main objectives of the work by (Foulon-
shapes of different classes is sufficiently important to neau et al., 2006) was to provide an algorithm ro-
discriminate between them, and in the same class dif- bust to occlusions, a hard constraint on the shape was
ferences of the shape are too small to well discrimi- needed and high order moments were computed. In
nate between them. our framework, the goal is to capture global features
In the following experiment we compare moments at of the shape and allow a small variability between
a maximum order 10 in order to well differentiate them. Therefore only quite small order moments are
shapes and to take advantage of the global represenneeded.
tation of a shape by its moments.
Minimization. We perform the minimization of the
PCA Analysis. In this section, we study the capa- functional (12) by a gradient descent method.
bility of Legendre moments to efficiently discrimi- To insure thati € BVjp 1(Q) in (1) we rewrite it in the
nate between correctly segmented hearts and erro-same manner as in (Chan et al., 2005) :
neous segmentations, by considering again the four
classes of shapes. Inspired by (Poupon et al., 1998), minETVg(uoo):min/g\mu\dmr(/' u<x)r(x>d9)
we performed a PCA analysis on a matrix in which ! ‘e 9
each raw is an observation, i.e. a segmentation re- +/Qorvz(u)d9+\—Z’llh'e’—hw’(u)u%
sult, and each column corresponds to an ordered list
of Legendre moments. The PCA analysis shows that
the first three modes represent 90% of the variance.
As illustrated in Figure 4, the moments also discrim-
inate efficiently the different types of shapes. Indeed
samples from the heart alone are well grouped in the  n:1),., . Ou(x) ,
plang of the first two modes and are well Eeparated W00 =00 + ot {dw(g\uu(x) ) =) —ave(u)
from the other types of shapes. _y Z (()\ref

(13)

wherevg is a regularized approximation of the pe-
nality functionv(a) = max{0,2ja—1/2| — 1} with
a > []r (%) + | ||\ = A3l

and we obtain the following iterative scheme:

\
p,ar — }‘%ch;,r (u))PD(X) Pq (Y) Pr (Z))j|
p.q,r

3.3 Introducing Shape Constraint in the

Functional Choiseof r. Letus arbitrarily define the heart region

as the foreground region, (i.e. the region in which we

We propose to introduce an additional term in the seg- would like to obtainu(x) = 1) and the rest of the re-
mentation functional to be optimized through a com- gion of interest as the background region (i.e. the re-
parison between moments of a reference shape andjion in which we would like to obtain(x) = 0).
moments of the current segmented shape, as follows: Histograms of the foreground and the background
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intensities,obtained from manual segmentations, areTable 2: Quantitative results: comparison between auto-
shown in Figure 5. It shows that intensities values matic and manual segmentations. The numbers in paren-
are quite similar in the background and in the fore- theses are results obtained by (Moreno et al., 2008).
ground. However, the intensity is very homogeneous Similarity index | sensitivity | specificity
in the heart and presents two peaks in the background| Heart 1 0.82 (0.77) | 0.96 (0.96)| 0.74 (0.64)
Heart2| 0.81(0.70) | 0.89(0.90)| 0.78 (0.58)
Heart3| 0.80(0.75) | 0.94 (0.78)[ 0.70 (0.72)
] Heart 4 0.84 (0.74) 0.76 (0.62) | 0.97 (0.92)

\

} ; Heart5| 0.77 (0.84) | 0.81(0.83)| 0.72 (0.84)
| ] Heart6| 0.81(0.80) | 0.93(0.91)| 0.71 (0.71)
| Heart7| 0.78 (0.71) | 0.84(0.88)| 0.73 (0.60)

R o Heart8| 0.80(0.67) | 0.92(0.71)| 0.80 (0.62)
Figure 5: Histograms of foreground (left) and background |"Heartg 0.75 (0.64) 0.83(0.60)| 0.73 (0.70)
(middle) intensities. Right: background intensity proibab
ity density estimation using Parzen window.

We use this difference to construct the following 4 HEART SEGMENTATION

relevant data fidelity term(x):

Masking a Region of Interest and Initializing.

From a pre-segmentation of the lungs, a region of in-
terest (ROI) around the heart is built as the bounding
where ¢y = J2/U000X 4o empirical estimation  box of lungs elongated at the bottom to insure that the

Jou(x)dx . .
mean of the heart intensity, is the interval of the im-  Neartis completely inside. A mask of the lungs and

age intensitiesp is the Parzen estimation of the prob- the trachea is removed from the ROI.
ability density function of the intensity of the back-
ground, expressed as:

plb) = 7o L (1= WK (160~ B)/ox (15)

l1-ulla

r(x) = (I —c1)® - (max((| —61)2))(/B(D(b) —K(I-b)%db (1)

where K is a Gaussian window K(a) =

1 aZ . . .
EeXp(_7)) ando is chosen sufficiently small to Figure 6: Preprocessing. (a) Heart ROI with lungs and
distinguish the two modes in the background area.  trachea masked out. (b) Example of an initialization of
the hear segmentation. (c) Gradient weighting function
Choiceof tandy. CT images are calibrated, whith  around the heart.

known tissue intensity values (for examples compact
bones are known to be around 1000 Hounsfield units ~ Moreover tissues at the right of the left lung and
(HU)). This intensity inter-images stability calibra- at the left of the right lung are removed. This is illus-
tion allows us to pre-set the weight of each term in trated in Figure 6.

the functional in order to insure a good balance be- The initialization is performed semi-automatically. A
tween them. The regularization term, computed on point C approximatively at the center of the heart is
manual segmentations, is of the order of {iocorre- marked and the initial value afi(x) is defined by
sponds to the surface of the whole heart weighted by u(x) = 1 if x is both inside a sphere centeredGit
g). The data fidelity term is close to zero. The shape with 4 cm diameter and inside the region of interest,
constraint term at order 10 falls within the range of andu(x) = 0 otherwise.

values[1,2]. Finally, by dividingg by 1¢° a good
balance between all terms in the functional (12) is ob-
tained fort andy in ]0, 10[. We performed several
experiments for different parameters and finally we
fixed1 = 1.4 andy = 0.8 for all tests summarized in
Table 2.

Testsand Results.  Tests on 9 non contrast CT scan

have been performed. For each one, the result of
the segmentation was compared with a manual delin-
eation done by an expert. Similarity, sensitivity and

specificity indices are computed and reported in Table
2. We also compared our results with those obtained
by the method of Moreno (Moreno et al., 2008). We

globally obtain better results than those obtained by
Moreno et al. Differences between the results of the
two methods are illustrated in Figures 7(b) and 8. Ex-
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