
HAL Id: tel-01012222
https://theses.hal.science/tel-01012222

Submitted on 25 Jun 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exploiting parallel features of modern computer
architectures in bioinformatics : applications to genetics,

structure comparison and large graph analysis
Guillaume Chapuis

To cite this version:
Guillaume Chapuis. Exploiting parallel features of modern computer architectures in bioinformatics :
applications to genetics, structure comparison and large graph analysis. Bioinformatics [q-bio.QM].
École normale supérieure de Cachan - ENS Cachan, 2013. English. �NNT : 2013DENS0068�. �tel-
01012222�

https://theses.hal.science/tel-01012222
https://hal.archives-ouvertes.fr

THÈSE / ENS CACHAN - BRETAGNE
sous le sceau de l’Université européenne de Bretagne

pour obtenir le titre de
DOCTEUR DE L’ÉCOLE NORMALE SUPÉRIEURE DE CACHAN

Mention : Informatique
École doctorale MATISSE

présentée par

Guillaume Chapuis
Préparée à l’Unité Mixte de Recherche 6074
Institut de recherche en informatique et systèmes
aléatoires / Inria Rennes

Exploiting parallel
features of modern

computer architectures in
bioinformatics

Applications to genetics, structure comparison
and large graph analysis.

Thèse soutenue le 18 décembre 2013
devant le jury composé de :

Nouredine Melab
Professeur / rapporteur

Gunnar Klau
Professeur / rapporteur

Frédéric Guinand
Professeur / examinateur

Patrice Quinton
Professeur / examinateur

Rumen Andonov

Professeur / co-directeur de thèse

Dominique Lavenier
DR CNRS / directeur de thèse

2

Contents

1 Introduction 7

2 Background 11
2.1 Introduction . 11
2.2 Overview of CPU and GPU architectures 12
2.3 Hierarchy of computational problems 13
2.4 Coarse-grain parallelism . 14

2.4.1 Multicore CPU programming 15
2.4.2 GPU programming . 17

2.5 Fine-grain parallelism . 21
2.5.1 Vector instructions . 22
2.5.2 Bit-level parallelism . 23
2.5.3 Instruction-level parallelism 23

2.6 Parallelization in bioinformatics . 23
2.6.1 Sequence comparison . 24
2.6.2 Structure comparison . 26

2.7 Conclusion . 28

3 GPU accelerated QTL mapping 29
3.1 Introduction to QTL mapping . 29
3.2 Methods and algorithms . 32

3.2.1 Linkage Analysis . 32
3.2.2 Linkage Disequilibrium and LDL Analyses 33
3.2.3 Thresholds detection . 33
3.2.4 Algorithms for QTL detection 34

3.3 GPU implementation . 36
3.3.1 Mapping computations on the GPU 37
3.3.2 Optimizing GPU memory usage 38
3.3.3 Reducing CPU/GPU transfers 39
3.3.4 Optimizing homoskedastic analyses 39

3.4 Experiments and results . 40
3.4.1 Execution times . 40
3.4.2 Speedups . 41

3.5 Conclusion . 43

4 Efficient Multi-GPU Computation of All-Pairs Shortest Paths 47

i

Contents Contents

4.1 Introduction . 47
4.2 Related Work . 50
4.3 Algorithm details . 51

4.3.1 Overview . 52
4.3.2 Step 1: Graph decomposition 52
4.3.3 Step 2: Computing distances within each graph component . . 52
4.3.4 Step 3: Computing distances in the boundary graph 54
4.3.5 Step 4: Distances between non-boundary vertices 55

4.4 Implementation . 57
4.4.1 Data organization . 57
4.4.2 Work analysis . 59
4.4.3 Parallel implementation . 61
4.4.4 Memory limitations . 62

4.5 Results and perspectives . 62

5 Parallel seed-based approach to protein structure similarity detection 67
5.1 Introduction . 67

5.1.1 Alignment graphs . 68
5.1.2 Relation to protein structure comparison 69
5.1.3 Measures for protein alignments 69

5.2 Methods . 70
5.2.1 Our approach . 70
5.2.2 Overview of the algorithm . 70
5.2.3 Seed enumeration . 71
5.2.4 Seed extension . 72
5.2.5 Extension filtering . 73
5.2.6 Guarantees on resulting alignments’ RMSD scores 74
5.2.7 Result ranking . 75
5.2.8 k-to-k alignments . 76
5.2.9 Graph splitting . 77

5.3 Parallelism . 78
5.3.1 Overview of the implemented parallelism 78
5.3.2 Coarse-grain parallelism . 78
5.3.3 Fine-grain parallelism . 80

5.4 Results and perspectives . 81

6 Conclusions and perspectives 85
6.1 Conclusions . 85
6.2 Perspectives . 86

6.2.1 QTL detection . 86
6.2.2 Large graph analysis . 86
6.2.3 Protein structure comparison 87
6.2.4 General remarks . 87

6.3 Acknowledgments . 88

ii

List of Figures

2.3.1 Rough classification of computational problems from a parallelism
point of view. 15

2.5.1 Differences between scalar and vector instructions. 22

2.5.2 Bit parallel set intersection. 23

2.5.3 Example of data dependencies. 24

3.1.1 Repartition of markers M1/M2 and N1/N2 on alleles Q1 and Q2. . . 30

3.2.1 Description of a contingency matrix used for computations at each
genome position and for each simulation. 36

3.3.1 Example of gridification on the GPU. 37

3.4.1 Evolution of the execution time with respect to the number of simu-
lations. 41

3.4.2 Evolution of the execution time with respect to the number of half-sib
families. 42

3.4.3 Evolution of the execution time with respect to the number of genome
positions. 42

3.4.4 Speedup with respect to the number of simulations. 43

3.4.5 Speedup with respect to the number of half-sib families. 44

3.4.6 Speedup with respect to the number of genome positions. 44

4.3.1 Illustration to the proof of Lemma Theorem 1. The shaded region
illustrates a component C with the subpath q = (xbi , xbi+1, . . . , xbi+1

)
of p inside it. 55

4.3.2 Illustration to the proof of Lemma Theorem 2. Note that while in
the figure both vi and vj are non-boundary, the proof does not make
such an assumption. 57

4.4.1 Adjacency matrix after reordering of the vertices. Vertices from the
same component are stored contiguously starting with boundary ver-
tices (in red). 58

4.4.2 The boundary matrix, here in red, is scattered over the adjacency
matrix. Step 3 consits in reconstituting the boundary matrix and
computing shortest distances. 59

4.4.3 Computations associated to each non-diagonal sub-matrix uses data
from 2 diagonal sub-matrices and part of the non-diagonal sub-matrix
itself. Computations are similar to matrix multiplications. 60

1

List of Figures List of Figures

4.5.1 Evolution of run times with respect to the number of vertices. Two
implementations are compared: our implementation using external
memory and the GPU Dĳkstra implementation from [OATLGE13].
Computations were run using two GPUs on a single cluster node. . . 63

4.5.2 Evolution of speedups with respect to the number of GPUs. The ideal
scaling line is given as a reference. 64

4.5.3 Evolution of run times with respect to the number of vertices. Three
implementations are compared: our two implementations - with and
without using external memory - and a distributed Dĳkstra imple-
mentation referred to as CPU Dĳkstra. All computations were run
on 64 cluster nodes. 65

5.1.1 Example of an alignment graph used here to compare the structures
of two proteins. The presence of an edge between vertex (1, 1) and
vertex (3, 2) means that the distance between atoms 1 and 2 of protein
1 is similar to the distance between atoms 1 and 3 of protein 2. The
clique (2, 1) (3, 2) (4, 3) indicates that RMSD of structures (2, 3, 4)
and (1, 2, 3) is less than 2τ . 68

5.2.1 Example of symmetry issues. Even though, vertex vl = (L,L′) be-
longs to the extension of seed(vi, vj, vk), points L and L′ lie on dif-
ferent sides of the plane defined by optimally superimposed triangles
IJK and I ′J ′K ′. 73

5.2.2 Illustration of the guarantee on the similarity of internal distances
between two pairs of atoms vl = (L,L′) and vm = (M,M ′), here
represented in yellow, added to a seed (vi, vj, vk) represented in blue.
Dashed lines represent internal distances, the similarity of which is
tested in the alignment graph. 75

5.2.3 Example of 1-to-1 alignments retrieved from a k-to-k alignments. In
red, a 1-to-1 alignment of optimal length but sub-optimal RMSDc and
in green a 1-to-1 alignment of optimal length and optimal RMSDc.
Solving the assignment problem on this graph yields the green align-
ment. 77

5.3.1 Overview of the implemented parallelism. 79
5.3.2 Bit vector representation of the neighbors of vertex vi in an alignment

graph G(V,E). In this example, vj unlike vk is a neighbor of vi. . . . 80
5.3.3 Intersection of neighbors of vertex vi and vertex vj. 81
5.4.1 These two proteins are both composed of two similar domains - named

A and B for 4clna (left), and C and D for 2bbma (right). These
domains are separated by a a flexible bridge. 82

5.4.2 Visualizations of the results for the comparison of proteins 4clna and
2bbma returned by CMO, PAUL and the four top alignments of our
approach. 82

5.4.3 Evolution of run times with respect to # of edges in the alignment
graph. 84

2

List of Algorithms

3.1 Algorithm for heteroskedastic analysis 35
3.2 Algorithm for homoskedastic analysis 35

4.1 Floyd-Warshall algorithm. 49
4.2 Dĳkstra’s Single Source Shortest Path algorithm. 49
4.3 Partitioned All-Pairs Shortest Path algorithm 53

5.1 Overview of the algorithm . 71
5.2 Seed enumeration . 72
5.3 Seed extension . 73
5.4 Extension filtering algorithm . 74
5.5 Graph splitting algorithm . 78

3

List of Algorithms List of Algorithms

4

List of Tables

3.2 Values and ranges of values for fixed and variable parameters used in
Fig. 3.4.4, Fig. 3.4.5, and Fig. 3.4.6. 45

3.1 Values and ranges of values for fixed and variable parameters used in
Fig. 3.4.1, Fig. 3.4.2, and Fig. 3.4.3. 45

5.1 Details of the alignments returned by other tools - columns 2 through
4 - and our method - columns 5 through 8. Best scores are in italics. . 83

5.2 Run times and speedups for varying # of cores. 83

5

List of Tables List of Tables

6

1 Introduction

The recently renewed interest in parallel computing stems from a conjunction of
two very different factors. On the one hand, data generation in many fields is be-
coming exponentially cheaper yielding a data tsunami and greatly increasing the
demand for time-consuming computations. On the other hand, computer architec-
tures are undergoing a drastic shift from exponentially increasing clock frequencies
to exponentially increasing parallel capabilities.

The exponential growth of available data to process lead to the emergence of
the concept of Big Data. Although the term was first used in 1941 according to
the Oxford English Dictionary, it really became popular around the year 2007; a
special issue of Nature in 2008 was even entirely dedicated to the Big Data concept
[HCF+08, Lyn08, W+08]. Coping with the Big Data phenomenon poses several
challenges in terms of storage, search, sharing, analysis and transfers of the data.
In this thesis, we will concentrate on the computational aspect of the challenges, ie.
how to analyze large datasets using the limited capabilities of modern computers.
From a computational point of view, large datasets require efficient implementation
in order to reduce runtimes to a reasonable level as well as a careful usage of the
limited main memory available on a given computer.

The simultaneity of the regain in popularity of the Big Data concept and the recent
change in computer architectures may not be solely coincidental. The sudden halt in
the evolution of processor clock frequencies drastically accentuated the challenges of
Big Data, from a computational point of view at least. Before this shift in computer
architectures, any program could process a larger amount of data by simply having
it run on a newer computer with a higher clock frequency. Increasing the parallel
capabilities of a computer will however have no immediate impact on a sequential
program’s runtime. Parallel capabilities of modern computers require efforts from
programmers to be fully exploited. Some computational problems will not even
benefit from parallelism; others may be well suited for certain types of parallelism
but will not be accelerated by other types. Implementing a parallel version of an
algorithm must therefore be preceded by a careful analysis to exhibit parallelism
and find suitable parallel hardware to target.

This conjunction of factors is particularly noticeable in bioinformatics. Recent
advances in data generation such as High-Throughput Sequencing technologies have
stressed the need for efficient implementations, fully exploiting parallel capabilities
of modern computers, to handle the massive amount of data to process. The same
phenomenon can be observed in other domains such as protein comparison and pro-
tein interaction analyses, where protein databases have known the same exponential
growth. In the past few years, parallel implementations have flourished targeting

7

Chapter 1 Introduction

various parallel architectures such as multicore Central Processing Units (CPUs)
and manycore Graphics Processing Units (GPUs).

This thesis focuses on exploiting the parallel capabilities of modern computers for
computationally intensive bioinformatics problems. Various problems are studied,
from which different types of parallelism can be exhibited and exploited.

Chapter 3 describes the various parallelism techniques that can be employed on a
modern computer and the types of computational problems to which they can ben-
efit. We then detail some recurring problems in bioinformatics that have previously
been ported onto parallel hardware. Two types of parallelism are discussed here:

• Fine-grain parallelism, in which we include the use of CPU vector instructions
and bit-level parallelism techniques;

• Coarser-grain parallelism such as multicore CPU implementations and many-
core GPU implementations.

This distinction between fine- and coarse-grain parallelisms is of course arbitrary and
depends on the application; GPU parallelism can be considered fine-grain parallelism
in the context of a multinode cluster parallelization.

Chapter 4 proposes a GPU implementation of a tool for Quantitative Trait Locus
(QTL) detection called QTLMap. The embarrassingly parallel structure of the
statistical approach developed in QTLMap, makes it an ideal candidate for a porting
to the GPU architecture. This new implementation is up to 75 times faster than
the previous multicore CPU version. This speedup can however only in part be
imputed to the use of a GPU. Some optimizations have been specifically made to
accelerate the GPU implementation; these optimizations could also be implemented
on the CPU version of the tool. Faster QTL analyses allow geneticists to consider
more precise computations and the processing of larger datasets.

In chapter 5, we discuss a new algorithm for the All-Pairs Shortest Paths (APSP)
problems. APSP consists in finding the minimum distance between any two vertices
of a weighted graph. This new algorithm, derived from the Floyd-Warshall algo-
rithm, targets graphs with good community properties and develops a partitioned
approach to the problem. The two-level parallelism exhibited by this algorithm allow
for a multi-node GPU implementation. Computations are intended on large clusters
of multi-GPU nodes and thus for very large instances of the problem - graphs with
up to 109 vertices. Computing the shortest distances between all pairs of vertices in
a graph is the first step to obtaining many graph measures that are useful in various
domains. Large graph analysis becomes crucial in bioinformatics when studying
large protein protein interaction networks for instance.

In chapter 6, we propose a new approach to protein structure comparison and its
parallel implementation. This new algorithm was early on developed with paral-
lelism in mind. The implementation exploits multiple levels of parallelism such as
vector instructions, bit-level parallelism with a bit-parallel set representation and
computations across multiple cores of a CPU. These multiple levels of parallelism
allow a more in depth analysis of the similarities between two proteins by providing

8

Introduction

more than a single pair of similar regions to be returned as well as more compli-
cated configurations to be taken into account, such as sequence inversions and local
flexibility of proteins.

9

Chapter 1 Introduction

10

2 Background

2.1 Introduction

The aim of bioinformatics is to use state of the art techniques stemming from
the computer science field to tackle computationally intensive biological problems.
Bioinformatics embraces fields such as DNA or protein sequence alignments, anal-
ysis and comparison of protein or RNA structures. All these fields have known an
exponential increase in the amount of available data in the past decades.

DNA sequencing is perhaps the most striking example of this rapid increase in
data availability. Sequencing techniques have dramatically improved since the first
sequencing of an organism in 1977, a 5386 base-pair long bacteriophage [SNC77].
Sequencing of the human genome, more than 3 billion base-pairs, was achieved in
the year 2000 at the steep price of several billion dollars. Nowadays, next generation
sequencing technologies have drastically reduced the price down to about 7k dollars.

The consequence of the decrease in price of data generation is an explosion in size
of databases in many fields. This phenomenon, referred to as Big Data, has rendered
traditional tools incapable of outputting results in a reasonable time frame. The
Big Data phenomenon also poses serious issues in terms of storage. Simultaneously,
microprocessor architecture are rapidly evolving in a completely new direction.

Up until around 2007, processor clock frequencies increased exponentially, dou-
bling approximately every 2 years. This exponential growth then came to a halt due
to the power wall. Sustaining increasing clock frequencies would come at the price
of a prohibitively high power consumption. Microprocessor manufacturers however
still manage to follow Moore’s Law, which states that the number of transistors on a
single chip grows exponentially [M+65, Moo] - doubling approximately every 2 years
in practice. This increasing number of transistors does not however go towards in-
creasing clock frequencies anymore but instead mostly towards more computational
units on a single chip.

From a programmer’s point of view, an increase in the number of processing units
is very different from an increase in clock frequency. Doubling the clock frequency
means that the same sequential program will run effortlessly up to twice as fast. On
the other hand, doubling the number of computational units will have absolutely
no impact on the run time of the sequential program. In order to benefit from the
additional computational units, one has to undergo the tedious process of paral-
lelizing the sequential program. Not all programs, however, can benefit from this
parallelizing process. With twice as many computational units available, run times
of a parallel program will at most be reduced by a factor 2 but this ideal case is far

11

Chapter 2 Background

from being the norm.
Central Processing Units (CPU) have only recently adopted parallel architec-

tures as a standard for even general public computers. Graphics Processing Units
(GPUs) have had that approach for a little longer, which is why the computational
capabilities of these components has increasingly drawn the attention of the high
performance computing community. GPUs present a massively parallel architecture
with an impressive theoretical computational throughput and are an integral part
of most modern computers.

Taking advantage of all the computational power offered by a modern computer
means using its CPU cores simultaneously as well as its GPUs. In terms of paral-
lelism, modern CPUs also offer vector instructions allowing executions of the same
instruction over multiple data simultaneously. These parallelizing techniques are
however not suited for every problem. Deciding which approach to consider and
implementing it for a particular problem requires a careful analysis of the problem
to be solved.

In this chapter, we first describe the differences between the CPU and the GPU
architectures. We then give an overview of the different types of existing compu-
tational problems as well as some hints about which types of parallelism that can
be considered. The following sections give an overview of the parallel capabilities
offered by modern computers. We finally present recent examples of parallel appli-
cations in bioinformatics.

2.2 Overview of CPU and GPU architectures

Central processing units (CPUs) and graphics processing units (GPUs) have very
different architectures. These differences stem from the fact that these two compo-
nents had very distinct original purposes. On the first hand, CPUs are designed to
be all purpose processing units. CPUs must be able to run a variety of heteroge-
neous programs and in particular an operating system. GPUs on the other hand, are
components initially dedicated to image rendering. They were originally designed
to compute the values of each pixel to display on the screen.

A typical computer screen displays millions of pixels that need to be refreshed
dozens of times every second. The tasks associated to updating each of these pixels
are almost always identical and independent - or solely depend on the values of other
pixels in the near vicinity. GPU architecture was therefore designed to exploit the
massive parallelism inherent to image rendering. In that regard, GPUs can nowadays
be successfully used in general computations to solve problems that present the same
properties as image rendering - i.e. problems that can be decomposed in a large
number of independent tasks.

Modern CPUs are composed of several cores offering interesting parallel capabil-
ities. These cores are fast, all-purpose processing units that benefit from a large
cache hierarchy and a dedicated control unit. New technologies such as Intel’s
Hyper-threading even allow each of these cores to run two threads at full speed

12

2.3 Hierarchy of computational problems

simultaneously. Each thread also has access to larger registers and an associated set
of vector instructions. These instructions allow each core to perform multiple iden-
tical instructions simultaneously over different data items. Due to their dedicated
control units, two CPU cores of a single CPU can execute different instructions at
the same time; this property allows multicore CPUs to run independent processes
simultaneously.

Modern GPUs, on the other hand, are composed of a large number of multipro-
cessors. Each multiprocessor has its own control unit and a small manual cache
memory; both of them are shared among a large number of GPU cores. Recent
GPUs also offer a small automatic cache shared among GPU cores of each multi-
processor. The fact that the control unit is shared among GPU cores from the same
multiprocessors forces these GPU cores to always execute the same instruction over
different data items at all times. In this sense, GPU multiprocessors are very similar
to a single CPU core only executing vector instructions.

With the increasing use of GPUs in general purpose computations, the need for
more CPU-like features becomes greater. GPU vendors are adapting to this recent
demand. This trend can be observed in the integration of more precise floating point
units, conforming with IEEE standards; in the increasing set of available instructions
or in the recent adding of l1 and l2 caches.

In the meantime, CPU vendors, limited by the power wall, cannot keep increasing
processor frequencies as they used to until around the year 2007. CPU performances
are however still improving, though not by increasing clock frequencies. Instead,
better performances are obtained, for example, by issuing more instructions per
clock cycle, a process referred to as instruction level parallelism (ILP), by increasing
the size of SSE vectors and their related set of instructions or by increasing the
number of CPU cores on a single chip. Thus, CPU performances nowadays mostly
improve by the addition of parallel features at different levels.

Both the CPU and GPU architectures are slowly merging to a hybrid architecture
exhibiting traits inherited from traditional CPUs, i.e. all-purposeness, and from
GPUs, i.e. massive parallelism. However, as of today, clear distinctions between
the two architectures remain and it is up to developers to determine which type of
parallelism to exploit depending on the studied problem, and what architecture best
suits their needs.

2.3 Hierarchy of computational problems

Having access to highly parallel hardware with modern CPUs and GPUs does not
mean that any implementation of a computational problem can be significantly
accelerated. Some computational problems are inherently sequential and will not
benefit from an attempt at parallelizing them. A common analogy for such problems
comes from the software development field and claimed that adding manpower to a
late project makes it later. The analogy states that “nine women can’t make a baby
in a month”.

13

Chapter 2 Background

This analogy is also valid in our case. Some problems simply do not benefit from
additional computational units. Thus no attempt should be made at parallelizing
such computational problems. An example of such an inherently sequential problem
is optimally playing a card game; computing which card is the best to play at a given
round always depends on the previously played cards, thus one cannot compute
rounds n and n + 1 simultaneously. However computing a single round may be
breakable into independent tasks.

In order to be consider parallel, a computational problem should be breakable into
independent tasks. Two tasks are considered independent if one does not need the
result of the other to be computed. These independent tasks can then be computed
independently and simultaneously on different processing units. Being able to break
down a problem into independent task does not however ensure that a parallelization
attempt will yield a decent speedup. If said tasks are greatly unbalanced for instance,
balancing the total workload between the available processing may become tricky
or even impossible. If, for example, one task represents 90 percent of the total
execution time, any effort at balancing the workload is vain.

A computational problem is considered embarrassingly parallel if it is parallel
and if all the sub-tasks composing the problem are perfectly balanced and identical.
This strong property makes load balancing between the computational units trivial.
Problems exhibiting this property are also candidates for executions on hardware
that require that identical operations are computed between different computing
units at all times. Such hardware include vector instructions on a CPU and GPU
multiprocessors.

Figure Fig. 2.3.1 shows a rough classification of computational problems. Belong-
ing to a given class of problem gives hints into which type of hardware is best for
a given problem but is not nearly enough to make a decision. Many other aspects
of the problem must also be taken into account to decide whether it fully complies
with specific hardware restrictions. Such aspects include memory access patterns,
number of independent tasks or required memory.

2.4 Coarse-grain parallelism

Parallelism can be exploited at many different hardware levels in today’s comput-
ers. Parallelism can range from distributing computations over a grid to executing
two instructions simultaneously on a single computation unit. The former type of
parallelism is considered coarse grain parallelism, while the latter is considered fine
grain parallelism. The grain traditionally refers to the size of the tasks that are
run in parallel. When distributing computations over a grid, the overhead induced
by the communication between nodes is far from negligible and, in order to better
amortize it, the initial problem must be split into large tasks; therefore, parallelism
over a grid of computers is considered coarse grain.

In this chapter, we focus on parallelism on a single machine. What we will consider
coarse grain parallelism here is using multiple cores of a modern CPU and offsetting

14

2.4 Coarse-grain parallelism

Computational
problems

Task parallel
problems

Embarrassingly
parallel

problems

Inherently
sequential
problems

Parallel
problems

Figure 2.3.1: Rough classification of computational problems from a parallelism
point of view.

computations to a GPU. In these two cases also, substantial speedups can only be
obtained when tasks are large enough. When programming on a multicore CPU,
the size of the tasks needs to amortize the overhead induced by spawning multiple
threads and in the case of GPU programming it needs to amortize the overhead
induced by the communications between the CPU and the GPU.

2.4.1 Multicore CPU programming

Most modern general public CPUs are multicore. In order to make full use of a
recent CPU, a program must exploit the computational power of all CPU cores
simultaneously. Each CPU core can be seen as an independent CPU in the sense
that very different tasks can be assigned simultaneously to two different cores. This
form of coarse-grain parallelism is referred to as MIMD (for Multiple Instructions
Multiple Data); at any moment, two cores can be executing different instructions
over different pieces of data.

CPU cores share the same memory. Shared memory has the advantage of allow-
ing easy communication between cores but leaves to the programmer the tedious
responsibility of ensuring data consistency. In order to prevent two or more cores
from modifying the same memory address concurrently, complex mechanisms must
be implemented. Various strategies exist to do so and depend on the framework
chosen by the programmer. Two multicore frameworks are exposed in this section:

• the POSIX threads library (or Pthreads), a low-level approach to multicore

15

Chapter 2 Background

programming;

• The OpenMP interface, a higher-level approach.

2.4.1.1 The POSIX threads library

The POSIX threads library is a standardized C language threads programming in-
terface for UNIX systems that was specified by the IEEE POSIX 1003.1c standard
in 1995. This standard programming interface emerged to provide a cross-platform
alternative to already existing proprietary APIs proposed by hardware vendors.
Nowadays, most hardware vendors provide an implementation of the Pthreads stan-
dard along with their own proprietary APIs.

Task definition

In the POSIX threads paradigm, parallelism is exploited by splitting the initial
problem into tasks that are attributed to different Pthreads. A Pthread can be seen
as a lightweight process, in the sense that Pthread creation generally induces much
less system overhead than process creation. Pthreads also share the same address
space; thus, inter-thread communication is usually more efficient than inter-process
communication.

Tasks are defined by specific C functions. When no data dependency exist between
two functions - i.e. the result of the second function does not depend on the result of
the first function and vice versa - they can be run in parallel. Parallelism is achieved
by attributing both functions to different threads. The developer can decide to create
as many threads as necessary but optimal performances are usually obtained by a
number of threads that is less or equal to the number of available CPU cores on the
machine. The developer has very little control over the way threads are scheduled
and should not make any assumption. Great care must be exercised when two or
more threads access the same data. In general, the sharing of data must remain as
low as possible. When data sharing is inevitable, synchronization techniques can be
applied to preserve data coherency.

Synchronization

Three types of thread synchronization are available in the POSIX threads library:

• Joins, which allow a thread to wait for another thread to finish its execution;

• Condition variables, which are used to prevent a thread from starting its exe-
cution until the condition is met;

• Mutexes, which can be used to prevent concurrent accesses to a memory ad-
dress.

16

2.4 Coarse-grain parallelism

Joins are a task level type of synchronization. They can be used to manage the
logical order in which tasks are to be executed. Often, a master thread handles
the creation of threads, assigns the various tasks of the problem and takes care of
the logical execution order of these tasks using joins. Condition variables provide
a finer way of synchronizing threads, by not requiring a thread to wait for another
thread to terminate but instead wait for it to reach a specific point in the resolution
of its task. Finally, mutexes are a variable level type of synchronization. They
are generally used to ensure sequential accesses to shared variables. In all forms of
parallelism, synchronization between units is best kept to a minimum, because it
serializes operations and thus reduces parallel computations.

2.4.1.2 The OpenMP interface

OpenMP is also a programming interface for shared memory parallel computing. It
offers a higher level of abstraction compared to the PThreads library. It is available
on various environments (including Unix and Windows) and programming languages
(C/C++, FORTRAN).

The main advantage of the OpenMP interface is to let users design parallel
programs from existing sources with very little modifications to the code. Since
OpenMP is directive based, in many cases the modified program can still be com-
piled in a sequential way by simply ignoring the directives.

Task definition is also not as cumbersome as it is with the Pthreads library. In the
OpenMP paradigm, a task can simply be a portion of code or even iterations of a
loop. OpenMP also offers synchronization mechanisms similar to the ones provided
by the Pthreads library.

2.4.2 GPU programming

GPUs have recently attracted the interest of the scientific computing community
with their tremendous computational capacity. The use of GPUs for computations
other than graphic computations is referred to as General-purpose Processing on
Graphics Processing Units (GPGPU). Programming for a GPU requires developers
to provide work for a massive number of GPU cores. In order to be efficient, a GPU
implementation needs to use all these available GPU cores simultaneously. In this
section, we first describe how parallelism is exploited in the GPU paradigm. We then
present limitations inherent to the GPU architecture. These limitations take form in
the limited synchronization available between GPU cores, in the particular memory
hierarchy offered by current GPUs and the memory transfers between the CPU and
GPU. We finally introduce three GPU programming environments: a proprietary
environment proposed by NVidia, namely the CUDA environment, a low-level, cross-
platform, open standard called OpenCL, and an emerging cross-platform standard
- the OpenHMPP environment.

17

Chapter 2 Background

2.4.2.1 Grid-based computations

A typical GPU is composed of several multiprocessors. Each of these multiprocessors
is itself composed of several GPU cores. Mapping computations to these two levels
of parallelism is done by creating a computation grid. A computation grid is a
matrix with up to three dimensions composed of blocks. A block is itself a sub-
matrix with up to three dimensions composed of GPU threads. Grids and blocks
map to the two-level parallelism of GPUs. Each block is to be executed on a single
multiprocessor and each GPU thread is to be executed on a GPU core.

In order to successfully implement a problem on the GPU, one needs to decompose
the given problem into tasks, which will constitute the blocks of the computation
grid. Each task must be in turn be decomposed into sub-tasks, which will constitute
the GPU threads of these blocks. The number of cores available per multiprocessor
depends on the GPU and influences the minimal efficient size for a block - typically
a multiple of the number of cores per multiprocessor. In NVidia’s terminology, a
block should have at least the size of a half-warp, with a warp being a set of 32
threads.

Not all problems however can be translated into these block/thread decomposi-
tions. The limited synchronization available between two GPU cores further reduces
the range of problems that can be efficiently addressed on a GPU.

2.4.2.2 Limited synchronization

Three types of synchronizations are discussed here:

• Within warp synchronization; the lowest level of synchronization between sub-
sets of threads of a same block;

• Intra-block synchronization;

• Inter-block synchronization.

Due to the SIMD nature of the GPU architecture, synchronization within a half-
warp is automatic. Threads that belong to the same half-warp always execute the
same instructions simultaneously. Therefore one can make assumptions about the
order in which instructions will be executed within a single half-warp. The size of a
warp - and thus that of a half-warp - however depends on the number of CPU cores
in a multiprocessor; this number may change with future generations of GPUs. It
may thus be unsafe to rely on this automatic synchronization.

The downside of this automatic synchronization is that whenever a branching
occurs - i.e. conditional or loop statements - if threads within a half-warp do not
all take the same branch, a process referred to as warp divergence, both parts of the
code will be executed sequentially. In other words, the first branch will be executed
by a first group of threads while the second group remains idle; the second branch
will then be executed by the second group of threads while the first group is idle.

18

2.4 Coarse-grain parallelism

Intra-block synchronization is possible using language dependent, device-side prim-
itives. This type of synchronization allows developers to manage, for example, ac-
cesses to the small manual shared cache available for each block.

Inter-block synchronization is theoretically not possible. In most cases, this type
of synchronization can be emulated by separating the kernel in which inter-block
synchronization is wanted into two separate kernels. The sequential computations
of these two kernels can then be enforced using host-side synchronization primitives.
Recent work by [XcF10]showed that such synchronization is possible with decent
performances but many assumptions are made to ensure a one-to-one mapping of
blocks to SIMD processors. These assumptions are hardware dependent, hindering
code portability and evolutivity. New developments in the CUDA language, such as
the ability to call new kernels directly from the device (a technology called dynamic
parallelism), could however open the door for new research in this direction.

The limited synchronization available on a GPU means that the tasks associated
to the various blocks composing the grid must have a high degree of independence.

2.4.2.3 Host/ Device memory transfers

In the GPGPU paradigm, the CPU is referred to as the host whereas the GPU is
referred to as the device. General computations on a GPU are always performed at
the request of the host. Since the host and the device do not share the same memory
space, when the CPU offsets computations to the GPU, it is necessary to first copy
the input data from the host’s main memory to the device’s main memory, then
request computations on the device and finally copy the results from the device’s
memory to the host’s memory.

Transfers between the host and the device can be considered as additional work
to the initial problem to solve. These transfers can be costly and must therefore be
minimized. They can however be hidden by computations on both the host and the
device and, if the device allows it, by another transfer in the opposite direction.

2.4.2.4 Memory accesses

GPUs typically offer two types of memory:

• slow, global memory; a large memory space - typically several GB - used for
input and output data;

• fast, on-chip memory; a small memory space - typically several kB - that can
be used as a manual cache for input data reuse, intra-block communication
and intermediate data.

NVidia GPUs also offer a second type of on-chip memory referred to as constant
memory. This memory space can only be filled by the CPU before GPU computa-
tions. Only read accesses are allowed from the GPU. This memory space can for
instance be used to send additional parameters to GPU threads.

19

Chapter 2 Background

A single memory transaction from or to global memory may take up to 800 clock
cycles [NVI12]. More than a single data item can however be modified in a single
global memory transaction. Namely, if threads belonging to a same warp access
consecutive memory addresses, these accesses can be merged into a single memory
transaction using a larger part of the bus width. This process, referred to as coa-
lescing, stresses the need for programmers to carefully manage data access patterns
in their GPU code. As in traditional CPU code, data locality is of the utmost im-
portance when it comes to GPU programming. If non-consecutive memory accesses
are to be performed, these accesses may in some cases be translated to coalesced
accesses and stored in on-chip memory for later use.

Coalescing memory accesses drastically improves data throughput but does not
address the above mentioned,800 cycle, memory latency. This latency can be ad-
dressed in several ways. One way is to provide independent instructions in the same
instruction block as the memory access. These instruction will be computed while
waiting for the memory item to be retrieved. However, providing enough instruc-
tions to keep GPU cores busy for 800 cycles may prove challenging.

A second way is to provide more threads in the computation block than there
are GPU cores available in the multiprocessor (usually a multiple of the warp size);
therefore, when GPU cores stall on a memory access, a context switch can happen
and provide independent instructions to compute in the meantime.

Finally, the latency of memory accesses can be hidden by caching data that has
been retrieved from global memory into local, on-chip memory and reusing the data.
Best performances can be achieved by using a combination of these three techniques.
Fast, on-chip memory is however shared among threads of a GPU block; the more
GPU threads, the less shared memory is available per GPU thread. A trade-off must
thus be found between potential context switches and available on-chip memory to
cache global data.

2.4.2.5 The CUDA environment

NVidia provides a framework to program their line of GPUs. This framework,
named CUDA for Compute Unified Device Architecture, takes the form of extensions
to several popular programming languages such as C/C++ and FORTRAN. This
environment lets programmers define specific functions - kernels - to be executed
on the device. Grid and block dimensions are dynamically specified at each kernel
launch. Specific modifiers are also provided to indicate storage location of variables
on the device. Transfers from and to the device are explicitly requested by a set of
routines.

Device code is a subset of the original programming language with specific in-
trinsic functions to manage either host- or device side synchronization and other
GPU specific actions. Special variables are available to identify the position of the
current thread in the grid/ block environment. NVidia also offers a set of tools
to debug and optimize GPU code. Although efficient and easy to use, the CUDA
framework produces code that lacks portability and evolutivity. CUDA code only

20

2.5 Fine-grain parallelism

targets NVidia GPUs and optimizations made for a specific generation of GPUs will
most likely have to be - at least partially - rewritten in order to be efficient on later
generations of GPUS.

2.4.2.6 The OpenCL environment

OpenCL is a framework for computations over heterogeneous systems such as a com-
puter equipped with a modern graphics card. Designed to be platform-independent,
openCL code can therefore be compiled and executed on both AMD and NVidia
graphics cards for instance. OpenCL does not provide a higher level of abstraction
than CUDA but has the advantage of targeting multiple brands of accelerators in
a single code. When executing code on NVidia GPUs, OpenCL is however limited
by the back-end provided by NVidia, which uses the CUDA API. Therefore, when
run on an NVidia GPU, OpenCL code will never outperform its CUDA equivalent.
Nevertheless, [FVS11, KDH10] showed that, when correctly tweaked, OpenCL code
could reach similar performances than CUDA code.

2.4.2.7 The OpenHMPP environment

OpenHMPP is an emerging standard for GPGPU. It provides a cross-platform en-
vironment with a high level of abstraction. Much like OpenMP for multicore pro-
gramming, OpenHMPP provides a set of directives to annotate existing CPU code.
Specific functions can be annotated to be offset to the GPU. A default behavior is
provided and trigger implicit data transfers between the host and the device. Use-
less transfers can be avoided by specifying which pieces of data should remain on
the GPU between two computations. Explicit transfers are also available for finer
tuning.

OpenHMPP provides safe directives that will not change the semantic of the
original code. Annotated code can therefore still be compiled with a regular CPU
compiler to provide a GPU free alternative in case no GPU is available. Code
generated by the proprietary compiler can be executed on various brands of device
accelerators including NVidia and AMD GPUs. Evolutivity of the annotated code
is guaranteed by compiler updates.

2.5 Fine-grain parallelism

In this section, we present three forms of parallelism that take place at the instruction
level:

• Vector instructions (also known as SSE instructions for Streaming SIMD Ex-
tensions, which replaced a former set of vector instructions known as MMX
for MultiMedia eXtensions). These instructions allow developers to work with
registers that are larger than normal (32 or 64 bit) registers.

21

Chapter 2 Background

Scalar operation Vector operation

item A Item A
1

Item B

A+B

Item A
2

Item A
3

Item A
4

Item B
1

Item B
2

Item B
3

Item B
4

A
1
+B

1
A

2
+B

2
A

3
+B

3
A

4
+B

4

+ +

Figure 2.5.1: Differences between a scalar addition and a vector addition. In this
example, the length of the vector registers is 4 machine words.

• Bit-level parallelism. In this type of parallelism, more than one piece of data
are represented in a single register, allowing developers to compute operations
on multiple data items at once.

• Instruction level parallelism (ILP). This technique refers to the way several
consecutive and independent instructions can be computed simultaneously on
modern architectures. This type of parallelism is not truly controlled by pro-
grammers and is made possible by recent improvements in hardware designs
and control- and data-flow analysis. Being aware of ILP may however help
programmers write code that will better benefit from this type of parallelism.

2.5.1 Vector instructions

Vector instructions are a set of instructions that work on multiple word length
registers. As opposed to scalar instructions, vector instructions allow simultaneous
computations over different data items. Several data items, or vectors, can be loaded
into large registers and multiple operations can be performed simultaneously - see
Fig. 2.5.1. More vector instructions are added regularly increasing the number of
available operations.

Not all programs however can benefit from vector instructions. Vector instructions
will really be beneficial if several identical scalar instructions need to be computed
at one given time to be able to merge them into a vector instruction. Moreover, the
data items over which the vector instructions is to be computed should ideally be
contiguous in memory as packing scattered data items into a single register may take
a while and reduce the performance gain. Current x86 processors offer registers up to
256 bit long, allowing up to 8 32-bit words to be computed in one single instruction.

22

2.6 Parallelization in bioinformatics

...Subset A 00100011 11000100

...Subset B 10011001 10110110

&

... A Λ B 00000001 10000100

Figure 2.5.2: Bit parallel intersection of subsets. Using a logic and between these
two bit vectors yields the expected result.

2.5.2 Bit-level parallelism

Bit-level parallelism relies on the same principle as vector instructions except that
instead of increasing the size of the registers, we reduce the size of the data items.
Several smaller data items can be packed into a single register and computed simul-
taneously using traditional word size instruction or even vector instructions.

A typical bit-level parallelism example consists in representing subsets of a larger
set of size N using a bit vector the length of the super-set. The nth bit in the bit
vector represents the presence or absence of the nth item in the subset. In this case,
every bit of the subset is a data item. The intersection of two such subsets can then
be obtained in a reduce number of instructions using a simple logic and operation
- see Fig. 2.5.2. The number of instructions required for such an operation thus is
N/RS, where RS is the size of the register. In the same way, a logic or yields the
union of the two subsets. Inclusion of a subset A in a subset B can be tested by an
equality test between the result of A ∧B and subset A.

2.5.3 Instruction-level parallelism

Instruction-level parallelism (ILP) refers to the simultaneous execution by a single
processor of independent instructions belonging to a similar code region. Two in-
structions are considered independent if one does not read nor write a value that
is written by the other - see Fig. 2.5.3. ILP is not directly the responsibility of the
programmer and is exploited by the compiler and the hardware but knowing how
ILP works may let programmers write code that will allow the compiler to increase
the amount of ILP. Several techniques, such as loop unrolling, may favor ILP.

2.6 Parallelization in bioinformatics

Bioinformatics as a field of research encompasses a wide variety of data and computa-
tion intensive problems. Recent technologies, such as Next Generations Sequencers
(NGS), have greatly increased the amount of data to process for a single analysis,

23

Chapter 2 Background

a[i] = a[i]*a[i+1]

b[i] = b[i]*b[i+1]

a[i] = a[i]*a[i+1]

b[i] = a[i]*b[i]

a[i] = b[i]*a[i]

b[i] = b[i]*b[i+1]

a[i] = b[i]*a[i]

a[i] = b[i]*b[i+1]

No dependency Read after write Write after read Write after write

Figure 2.5.3: Examples of possible dependencies between two instructions.

thus accentuating the need for efficient implementations in a large array of known
problems. The aim of this section is to give a non exhaustive list of problems impor-
tant to bioinformaticians that have benefited from one or more forms of parallelism.
When available, speedups claimed by the original authors are also reported in this
section. However, these speedups should not be compared directly, since reference
times were not taken on similar architectures.

2.6.1 Sequence comparison

Sequence comparison is a central topic in bioinformatics. Comparing DNA, RNA
or protein sequences allows bioinformaticians to study the functional, structural
or evolutionary relationships between two sequences that may come from a single
individual, two individuals from a same species or even individuals from different
species. The recent exponential increase in the amount of data available has stressed
the need for efficient implementations, taking advantage of all the available compu-
tational power. In this context, many parallel implementation have been proposed.

2.6.1.1 Sequence alignment

Sequence alignment in bioinformatics is, from a computer science point of view,
string alignment over a very succinct alphabet. Therefore, bioinformatics relies
heavily on advances made in computer science. Aligning two sequences consists
in finding the superpositions of the two sequences that minimize the number of
mismatched characters. Gaps may be introduced in either sequence to allow a better
superposition of the two sequences. A gap penalty must be applied to minimize the
number of gaps.

[Mye99] proposed an elegant bit-parallel algorithm for approximate string match-
ing based on dynamic programming. This algorithm was recently adapted to DNA
sequence alignment by [KKN12]. In this implementation, the authors did not
compare execution times with a previous non bit-parallel implementation, thus no
speedup is reported here. They however estimated the comparison time to 28 ns
per base pair including file I/O on an Intel Xeon E5540 (2.53 GHz) PC. More re-
cently, [Edg04] proposed a bit-parallel improvement of their own software named
MUSCLE, a tool for creating multiple protein sequence alignments. In this im-
proved implementation, a bit vector is used to represent the presence or absence of

24

2.6 Parallelization in bioinformatics

k-mers in a given sequence; a k-mer being a subsequence of length k. In this rep-
resentation, the nth bit is set if the nth k-mer is present in the sequence and unset
otherwise. This representation allows MUSCLE to quickly compute set operations
such as intersection of two sets - see sec. 2.5.2.

Vector instructions have also been used to speed up sequence alignment programs.
[Far07] proposed a very efficient implementation of the Smith-Waterman algorithm
that takes advantage of Intel SSE2 intrinsic functions. The performance of their
implementation greatly surpassed that of other SSE implementations of the same
algorithm, namely [Woz97, RS00].

Sequence alignment has also been extensively parallelized over multicore CPUs.
[KT10] proposed a threaded implementation of MAFFT, a program for multiple
sequence alignment. Their parallel implementation scales decently up to about 10
CPU threads on a machine with a 16 core CPU. In terms of results, [KT10] obtained
a slightly lower accuracy than [Edg04] with much longer runtimes. [LSM10b] also
proposed a multicore implementation of a program for multiple sequence alignment
called MSAProbs. No information is given about how well their implementation
scales with the number of applied threads; they however show that their results
obtain better accuracy scores than [Edg04, KT10] but for runtimes even longer
than [KT10]. [L+09] also proposed a local alignment tool named Plast that takes
advantage of both SSE instructions and multicore parallelization.

Programs taking advantage of GPUs for sequence alignment started to appear
from the beginning of the GPGPU era with [LHJV06] for local sequence alignment
and [LSVMW06, WSVMW07] for multiple alignments. All of these programs used
graphics libraries to offset computations to the GPU as neither CUDA nor OpenCL
existed then. When CUDA was released by NVidia in 2007, new programs emerged
benefiting from the enhanced programmability of GPUS. [MV08, LR09] improved
previous performances on GPUs for local sequence alignment and [LSM09] for mul-
tiple sequence alignment. More recent efforts by [LSM10a, VS11, ZC13] focused on
improving with GPUs the performances of BLAST [AGM+90], the reference in local
alignment search.

2.6.1.2 The longest common subsequence problem

Given two strings, the longest common subsequence problem (LCS) consists in find-
ing the longest sequence common to both strings. A subsequence differs from a
substring in the sense that some characters from a given substring can be omitted
to form a substring. For example, CAT is a subsequence of the string CAGT , where
the character G is omitted. The generalization of this problem to an arbitrary num-
ber of strings is called the multiple longest common subsequence problem (MLCS).
The MLCS problem is known to be NP-hard, whereas the LCS problem can be
solved in polynomial time. Both problems are generally tackled using dynamic pro-
gramming (DP) techniques; parallel implementations for both problems thus mostly
rely on parallel DP techniques.

In bioinformatics, the length of the longest common subsequence of two sequences

25

Chapter 2 Background

is used as a similarity measure between the two sequences. As mentioned previously,
sequence similarity may indicate an evolutionary relation between two sequences.
Such similarity measures can be used in phylogeny for classification purposes or to
determine whether two proteins can have similar functions.

However, the LCS problem does not take into account any prior biological knowl-
edge for the found longest common subsequence. To address this issue, [Tsa03,
TLC+03] formalized the Constrained Longest Common Subsequence problem (CLCS).
The CLCS problem restricts the output of the LCS problem to subsequences con-
taining a given subsequence P ; for two input sequences M and N , only common
subsequences of M and N containing P are considered. Biological knowledge can
be incorporated in this additional constraint.

[Hyy04] proposed a bit-parallel solution to the LCS problem and improved two
existing bit-parallel implementations by [AD86, CIPR01]. [Hyy04] compared his
implementation to the fastest non-parallel implementation by [KC89] for increasing
alphabet sizes. [Hyy04]’s implementation is rather constant with respect to alphabet
size and at least twice as fast as that of [KC89], even though the latter is specifically
optimized for very large alphabets. [Deo10] also proposed a bit-parallel algorithm
but for the recently formulated CLCS problem; the performance of his implemen-
tation surpassed all other existing implementations for this problem and achieved a
speedup between 2 and 4 when compared to the fastest known implementation.

Multithreaded implementations exist as well for these problems. In 2011, [WKS11]
proposed a new algorithm and it Pthread implementation for the NP-hard MLCS
problem. [WKS11] compared their results to that of traditional sequence aligners,
namely MUSCLE [Edg04] and ClustalW [THG94]. Since sequence aligners differ
from MLCS solvers, [WKS11]’s run-times are much longer but yielded sensibly longer
results.

[YXS10] designed a new algorithm for the LCS problem that exhibits more paral-
lelism than previous approaches. They proposed two parallel implementations of this
new approach: a multicore CPU implementation and a GPU implementation. They
compared the run-times achieved by both implementations to that of the sequential
implementation from [UI93]. The multicore CPU version performed about 3 times
as fast as the sequential version and the GPU version showed a 6 fold speedup over
the multicore CPU version.

2.6.2 Structure comparison

Protein three-dimensional structures are more closely related to their functions than
protein amino-acid sequences; therefore, structures tend to be more evolutionary
preserved than sequences. Finding protein structure similarities thus yields more
information about functional similarities than sequence similarities. However, com-
paring three-dimensional structures proves more challenging than comparing one-
dimensional sequences.

A common way to address the problem of aligning three-dimensional structures
is to create an alignment graph or product graph. For two structures S1 and S2 or

26

2.6 Parallelization in bioinformatics

lengths m and n respectively, an alignment graph of these two structures is an m∗n
grid shaped graph, where vertex (i, j), located on the ith row and the jth column
corresponds to the matching of the ith element of S2 with the jth element of S1.

In this alignment graph, an edge between vertices (i1, j1) and (i2, j2) indicates
that matching elements i1 and i2 with elements j1 and j2 in the same alignment
is relevant - see sec. 5.1.1 for a more detailed description of alignment graphs. A
common way to add edges top the graph is if, for a given distance function d - often
a euclidean distance - d(i1, i2) ≈ d(j1, j2); in other words, if the two distances being
matched are similar in both proteins. In such a graph, a subset of vertices with high
edge density denotes a similarity between the two structures.

2.6.2.1 The maximum clique problem

The highest possible edge density in a subset of vertices is achieved when any any
two vertices are connected to each other. Such a subset of vertices is called a clique.
Finding the largest clique - or one of the largest cliques, as two distinct cliques can
be of equal and maximum size - in a given graph is an NP-hard problem referred to
as the maximum clique problem. The computational challenge it represents and the
large amount of parallelism it induces - testing the presence of all edges in different
subsets - seem to make the maximum clique problem a perfect candidate for various
parallelization techniques.

A common way to approach the maximum clique problem is through branch and
bound techniques. Branch and bound consists in presenting possible solutions in
the form of tree. In the case of the maximum clique problem, where a brute force
approach would consider every subset of vertices in the input graph, each branch
between two levels of the exploration tree denotes the addition of a vertex to the
current set of selected vertices. Each node of the tree is therefore a potential solution
to the problem. With this representation, a branch and bound approach estimates
the potential maximal clique that a given subtree can offer using an approximation.
If this potential exceeds the current known best clique, the subtree is explored and
pruned otherwise.

Parallelizing the exploration of a branch and bound tree is however challenging
and can even lead to a slowdown [LS84]. If multiple threads explore the branch and
bound tree in parallel, only communicating to improve the best known solution, the
whole tree is explored in a different order than it would in a sequential approach.
Some branches that would have been pruned with a sequential traversal of the tree
may end up being explored when processed in parallel, thus increasing the total
amount of work.

Despite this issue, [TKM07] proposed a multicore solution to the maximum clique
problem and achieved substantial speedups when compared to their own sequential
implementation. They however compared executions over only 12 randomly gen-
erated graphs. We can expect that some other instances may show much poorer
results if the lower bound of a clique close to the maximum size is found late in
the execution due to a different exploration order of the search tree induced by

27

Chapter 2 Background

parallelism.
A finer type of parallelism is nevertheless achievable without potentially increas-

ing the overall workload. Bit-level parallelism is particularly well suited to handle
set operations. [SSRLJ11] proposed a bit-parallel implementation for the maximum
clique problem and later published an improved version in [SSMRLH13]. This im-
proved version obtained better performances on average than the leading program
from [TSH+10].

To the best of our knowledge, no GPU implementation exist for the maximum
clique problem. The properties of the problem make it difficult to implement ef-
ficiently on a GPU; the number of subtasks is unpredictable and these tasks un-
balanced. A GPU implementation would greatly suffer from warp divergence and
non-coalesced memory accesses. Algorithms that can be used to speedup the branch-
and-bound search tree exploration can however be successfully implemented on a
GPU. [GZL+11] proposed a GPU implementation of a graph coloring heuristic.
graph coloring heuristics are often used for the maximum clique problem as an up-
per bound for the maximum clique that can be found in a branch of the exploration
search tree. Graph coloring consists in finding the smallest number of colors required
to color a graph so that no two adjacent vertices have the same color. The imple-
mentation from [GZL+11] proved that runtimes on the GPU could be equivalent
to that of traditional CPU implementations and yield better approximations of the
actual number of required colors.

2.7 Conclusion

Many applications in bioinformatics can benefit from parallelizing techniques. Mod-
ern computers nowadays offer a large array of parallel capabilities that range from
the fine-grain vector instructions to coarser-grain approaches such as multicore CPU
and manycore GPU programming. Each parallelizing technique provides a potential
speedups; reaching this theoretical speedup is however almost impossible to achieve
depending on the problem to solve.

Each parallelizing technique has its specificities that make it suitable only for
some computational problems. Identifying which techniques are susceptible of giv-
ing the best speedups for a given problem can be done through a thorough analysis
of the problem to solve and a deep comprehension of the hardware. Some problem,
known to be inherently sequential, will never benefit from parallelization. Once a po-
tentially successful parallelizing technique has been identified, developing a parallel
implementation is a tedious and time-consuming process.

Since parallel architectures seem to be becoming the norm in computer architec-
ture, new methods and algorithms should be developed early on with parallelism in
mind to reduce the cost of a subsequent parallelizing process.

28

3 GPU accelerated QTL mapping

This chapter discusses a GPU implementation of a QTL mapping tool named
QTLMap. QTLMap is developped by the animal genetics division at INRA. The
original release dates back to 2008 [GLRM+08]. The tool was later reimplemented
to take advantage of multicore CPUs in 2009. sec. 3.1 first gives an overview of the
underlying principles of QTL Mapping. sec. 3.2 then describes the specific methods
implemented in QTLMap. sec. 3.3 details the GPU implementation of QTLMap.
Finally, sec. 3.4 gives some experimental results. This chapter is mostly based on an
article published in the Journal of Computational Biology ([CFE+13]).

3.1 Introduction to QTL mapping

Most of the traits characterizing individuals (their "phenotypes": performance level,
susceptibility to disease etc..) are influenced by heredity. Geneticists are interested
in detecting, localizing and identifying genes, the polymorphism of which explains a
part of observed trait variability. Such genes are often called QTLs (for "Quantitative
Trait Locus"), the term locus pointing to a physical position on the genome.

QTL detection procedures consist in a series of statistical hypotheses tests at
successive putative locations on the genome. Many experimental designs, sampling
protocols and test statistics were proposed and used. QTLMap’s algorithm focuses
on regression approaches performed on sets of large families. These approaches
were developed for exploiting the linkage disequilibrium - the discrepancy between a
random distribution of haplotypes and the observed distribution of haplotypes in the
studied population - observed on a per family basis and / or at the population level.
Amongst the available software dealing with QTL regression techniques, QTLMap
was developed ([EMG+99]).

The general principle of Linkage Analysis (LA) for detecting QTLs within a fam-
ily is to correlate for each tested genome position, the performance trait measured
in the progenies and the grand parental origins of the piece of chromosome they
received from a common parent. These origins are inferred from "genomic marker
information" which describe the parental chromosomes (in diploid species, chromo-
somes are in pairs and each individual carries two copies, or "alleles", of QTLs, say
Q1 and Q2, and markers, say M1/M2, N1/N2) and the way they are transmitted
to their progenies (see Fig. 3.1.1). Locations of QTLs are pointed on chromosomal
segments, which display high correlations.

Linkage Disequilibrium Analysis (LDA) does not exploit family structure but
considers the whole population as a large sample of independent individuals. Due

29

Chapter 3 GPU accelerated QTL mapping

Figure 3.1.1: Repartition of markers M1/M2 and N1/N2 on alleles Q1 and Q2.

to various demographical events along the population histories (selection, breeds
mixtures, bottlenecks etc), allelic forms found at two close chromosomal positions are
generally not independent. A few measurements of this dependence were proposed
in the past ([Lew64, HR68]). This phenomenon is fully proven for markers, which are
easy to visualize (e.g. [FCA+00] for the Bovine species) and certainly true between
markers and QTLs.

In LDA, the direct effect of genetic information (to make presentation simple,
say the marker genotype effect) on the quantitative trait variability is tested at
successive positions. The basic idea is that groups of individuals defined by their
genetic class (e.g. their genotype for the marker located at the tested position) will
display significant differences in their quantitative performance if a QTL is located
close to this position. The signal will be stronger if:

1. the linkage disequilibrium between markers and QTL is higher and

2. the QTL explains a larger part of the variability.

A third category of techniques combines LA and LDA. In Linkage Disequilibrium
Linkage Analysis (LDLA), both the family structure and the population history
are exploited. The population is described as a set of "founders", supposed un-
related, but subject to linkage disequilibrium, and "non-founders" which inherited
from the founders, intact or recombinant chromosomes, after one or more genera-
tions of transmission. In LDLA, the performance trait measured in the non-founders
are correlated, as in the LA, with the founder origins of the transmitted piece of
chromosomes, and, as in the LDA, information about the population history is ex-
tracted from the degree of similarity between founder pieces of chromosomes. Thus,
detecting QTLs is basically a three steps procedure:

1. inferring from the marker information the "phase" of the parents ([EMG+99,
FEDGL10]), i.e. the way the two alleles of each marker are positioned on the
chromosomes. The output is the haplotype pairs of each parent, i.e. the list of
successive marker alleles carried by each chromosome (e.g. M1N1 and M2N2,
or M1N2 and M2N1);

30

3.1 Introduction to QTL mapping

2. estimating parents to progenies transmission probabilities of chromosomal seg-
ments;

3. evaluating the likelihood of performance traits observation under alternative
hypotheses (a QTL is present or not at the chromosomal segment location)
and modeling (LA, LDA, LDLA).

A statistical test is operated at each genome location tested and the best location
for the QTL is given by the most significant test. In terms both of theoretical devel-
opments and /or computation burden, a major difficulty is to obtain correct statisti-
cal test rejection thresholds. Different strategies exist to estimate these thresholds.
Efforts were made to find the distribution of the statistical process under the null
hypothesis (no QTL on the chromosome), but they did not fully consider the real
life situations where unbalanced designs are the rules (e.g. [RAED10]). Alterna-
tively, and this is the usual procedure, thresholds can be estimated empirically after
many permutations of the data breaking the marker-phenotypes correlations, or
after many simulations under H0 ([CD94]).

QTL mapping analyses, such as LDLA, are computationnally intensive. For
QTLMap, run times increase linearly with the size of the studied population, the ex-
ploration step of the studied genome region, and the number of simulations required
to determine the thresholds. As opposed to sizes of studied populations, which
should remain rather stable, the density of marker data increases exponentially and
allow a finer exploration of the genome regions, with a higher number of tested po-
sitions. Current QTL mapping analyses may take weeks to run in the most difficult
cases (e.g. when looking for QTL interactions) on modern computers and run times
will increase linearly with the density of available genetic markers. Therefore, di-
viding run times by an order of magnitude would allow geneticists to run multiple
analyses or consider even more time consuming analyses, such as multiQTL ones.

Despite the computational burden that QTL mapping represents, very few parallel
tools exist. The first attempt was made by [SHG+06] with gridQTL. This tool is
derived from QTLexpress ([SHK+02]), a popular web based tool for QTL analyses,
and harnesses the power of computational grids to try and reduce run times. Another
approach was developped by [FMG+10] with a tool called QTLMap. This tool takes
advantage of modern CPUs by using all their cores simultaneously. Finally, epiGPU
([HTWH11]) uses any commercially available GPUs for QTL analyses but focuses
on the detection of epistasis - a complex interaction between genes, where the effect
on a given phenotype of a single gene is altered by one or more other genes. Other
QTL software, such as eQTL, specialized in detecting expression QTLs, still run on
a single CPU core.

The empirical approach used in QTLMap makes it an ideal candidate for GPU
computations. In order to determine efficient relevance thresholds, the analysis not
only needs to be performed at each genome position but must also be repeated
for each simulated dataset - typically 103 to 104 times. The increasing density
of genetic marker data allows for ever more precise analyses, meaning that more
and more genome locations need to be considered. Computations at neighboring

31

Chapter 3 GPU accelerated QTL mapping

genome locations are correlated; it is however more efficient in practice to consider
them independant. Computations for each simulation are independant. These com-
putations can therefore be run in parallel. In this chapter, we propose a new version
of QTLMap, which performs about 70 times faster than the previous multicore
implementation, while maintaining the same level of precision.

We first describe the empirical methods for QTL Mapping ported to GPU in
QTLMap and give details about the algorithms of the methods. We then describe
the implementation of these algorithms on the GPU. We finally show the details of
the experiments we ran to test our new implementation and the results we obtained.

3.2 Methods and algorithms

QTLMap relies on three methods to determine possible QTL locations on linkage
groups. The first method, called Linkage Analysis - LA -, aims at determining the
transmission probability of each chromosomal segment, based on available marker
information in the studied population.

The second method, referred to as Linkage Disequilibrium Analysis - LDA -, relies
on studying the discrepancy between an expected random distribution of haplotypes
in the studied population and the observed distribution. The third method, referred
to as Linkage Disequilibrium Linkage Analysis - LDLA - combines the first two
approaches. Contrary to a Linkage Analysis, a Linkage Disequilibrium Linkage
Analysis does not solely take into account the length of chromosomal segments to
determine transmission probabilities, it also takes into account the more complex
Linkage Disequilibrium effect.

Once transmission probabilies have been determined, QTLMap statistically com-
putes the likelihood of the observations under the hypothesis that a QTL is present
at successive genome locations in the studied linkage groups. QTLMap then uses
an empirical approach to determine thresholds, above which a QTL effect can be
considered significant. The following two sections give a brief overview of the QTL
mapping methods implemented in QTLMap. A more detailed description of these
methods can be found in [EMG+99].

3.2.1 Linkage Analysis

In QTLMap, the hypothesis is tested that one QTL affecting a single trait is located
at a position x in a linkage group (e.g. a chromosome). Successive positions on
this linkage group are scanned. The test is performed with the interval mapping
technique applied to an approximation of the likelihood of having a QTL at a given
location ([KEH96, EMG+99, LREB+98]).

Let ns and nd be the number of sires and dams respectively in the studied pop-
ulation. All parents are supposed heterozygous at the QTL, with specific alleles,
giving a total of 2(ns + nd) QTL genotypes. Performance expectation of progeny
k of parent i and j is described as the sum of parental mean values µi + µij and

32

3.2 Methods and algorithms

of the deviations ±αl to this mean due to the QTL. In this model, it is assumed
that the parents are unrelated, the markers in linkage equilibrium - i.e. a random
distribution of haplotypes is assumed - and the trait normally distributed.

As proposed by [GD99] and by [LREB+98], the residual variance of the quantita-
tive trait is estimated within sire. Considering that sub-populations - in our case,
descendants of a given sire - can have different variances is called a heteroskedas-
tic hypothesis. This heteroskedastic parametrization better fits different patterns
(between sires) of segregation of other QTLs, unlinked to the tested position. The
homoskedastic hypothesis, which considers that the variance is equal for any two
sub-populations, is also implemented.

Parameters maximizing the likelihood can be obtained in an iterative two step
procedure:

1. Solving a linear system (see [EMG+99] for details);

2. Estimating the within sire family variances.

The steps are repeated until convergence, detected when the distance between the
likelihood ratio test (LRT) at iteration t and the likelihood ratio test at iteration
t+ 1 is arbitrarily small enough.

3.2.2 Linkage Disequilibrium and LDL Analyses

QTLMap implements the "LDA Decay" regression approach described by [LF09].
This Linkage Disequilibrium Analysis is particularly adapted to experimental pop-
ulations, characterized by a family structure, the target of this software. In this
approach, parental haplotypes are pooled in classes, the classification being open
to the user decision. In QTLMap, only the most probable sire and dam phases
are considered, and the classes (following the example given by [LF09]) are simply
defined by the haplotype (to a class corresponds a single haplotype).

To a given class corresponds a specific effect on the quantitative trait. The quanti-
tative performance of a progeny depends on the haplotypes as found in the parental
chromosomes from which the putative QTL alleles are originating and not to the
(possibly recombinated) haplotypes the progeny itself is carrying. The "LDLA"
approach described by [LF09] was also implemented. This approach combines the
previous LD Decay and LA models, the QTL effect being defined within the parental
haplotype effect.

3.2.3 Thresholds detection

The QTL mapping procedures described in sec. 3.2.1 and sec. 3.2.2 determine, for
each position on the studied chromosomal region(s), the likelihood of having a QTL
related to a given trait. This score can only be considered relevant if it is above a
certain threshold that has yet to be determined.

33

Chapter 3 GPU accelerated QTL mapping

We define H(n) as the hypothesis of having a n-QTL at n given positions.
QTLMap uses an empirical approach to determine relevance thresholds. In order to
estimate the probability of having a QTL at a given location (H(1)), it is compared
to the null hypothesis, H(0). Distribution under H(0) is calculated by running the
previous algorithm on random sets of data. Randomly generated datasets share the
same architecture as the actual dataset. They contain the same population but for
each invidual, performance vectors are randomly generated.

In order to compute the distribution under H(0), a user set number of simulations
are randomly generated and run. Efficient empirical thresholds can be obtained by
computing a large number of simulations. A single analysis with QTLMap explores
npos genome positions; rejection thresholds are obtained by running nsim anal-
ysis on simulated data, leading to a total of nsim.npos likelihood computations.
Computations at each genome position are correlated but it is better in practice
to consider them independent. Computations for each simulation are independent.
These computations can therefore be run in parallel.

3.2.4 Algorithms for QTL detection

QTLMap provides three types of analyses, presented in sec. 3.2.1 and sec. 3.2.2, and
allows for two types of parametrizations : hetero- and homoskedastic parametriza-
tions. In a heteroskedastic analysis, the variance of subpopulations can differ,
whereas in a homoskedastic analysis, the variance is considered stable within the
studied population. This section gives information about the structure of the al-
gorithm depending on the analysis and on the parametrization. This section also
describes the nature of the data used for computations.

Algorithm 3.1 describes the algorithm implemented in QTLMap for a heteroskedas-
tic analysis. The listing does not describe in details how to solve the linear system -
line 7 of Algorithm 3.1 - nor how to estimate the variance - line 8 of Algorithm 3.1 -
(see [EMG+99] for details). Instead, attention is brought to the structure of the com-
putations and more precisely to the three loops - lines 2, 3, and 5 of Algorithm 3.1
- that are offset to the GPU. The type of analysis - LA, LDA, LDLA - does not
change the structure of the algorithm and will only affect the way the linear system
is solved.

Iterations of the first two loops - lines 2 and 3 of Algorithm 3.1 - are completely
independent and can be run in parallel. However, iteration n of the third loop - line
5 of Algorithm 3.1 - depends on the result of iteration n−1, therefore the third loop
cannot be parallelized.

In the more specific case of a homoskedastic analysis, results can be obtained
in one pass without waiting for convergence. Details of the algorithm are given in
Algorithm 3.2. As in Algorithm 3.1, iterations of the two loops - lines 2 and 3 of
Algorithm 3.2- are independent and can be run in parallel.

At each iteration of the two independent loops, a contingency matrix, described
in Fig. 3.2.1, is used for computations. For each individual in the studied population
- referred to as descendants - these matrices contain values in various effects, some

34

3.2 Methods and algorithms

Algorithm 3.1 Algorithm for heteroskedastic analysis

1 Begin
f o r each genome_position

3 f o r each s imu la t i on
LRT = 0

5 do
LRTold = LRT

7 solve_linear_system()
LRT = estimate_variance()

9 whi le |LRT − LRTold| > ε
End

11

Algorithm 3.2 Algorithm for homoskedastic analysis

Begin
2 f o r each genome_position

f o r each s imu la t i on
4 solve_linear_system()

End
6

35

Chapter 3 GPU accelerated QTL mapping

Figure 3.2.1: Description of a contingency matrix used for computations at each
genome position and for each simulation.

of which are independent of the current genome position - i.e. fixed - and others
are dependent of the position - i.e. variable -, and a performance value, which
describes their performance with respect to the studied trait. Performance values
are also independent of the current genome position but change for each simulation.
All matrices have strictly the same dimensions for every iteration. Typical sizes for
these matrices are about 102 for the number of descendants and 102 for the total
number of effects (including performance).

The properties exhibited by Algorithm 3.1 and Algorithm 3.2 make them ideal
candidates for computations on a GPU. First, both algorithms mainly consist of
two independent loops, meaning that all iterations can be processed in any order
or in our case simultaneously. Second, dimensions of input data - see Fig. 3.2.1 -
are identical for every iteration. This consistency of the dimensions of input data
allows for regular data access patterns as well as a stable number of instructions to
process each iteration. Finally, input data for every iteration is partly redundant,
thus leaving room for optimization.

3.3 GPU implementation

Computations offset to the GPU consist mainly in operations on matrices. Op-
erations such as Cholesky decompositions and matrix multiplications are ideally
suited for execution on a GPU and can be achieved at near peak performance on
such devices ([VD08]). Several highly optimized libraries exist providing linear al-
gebra routines benefitting from modern hybrid architecture ([HPS+10, TDVD09]).
However, these libraries specifically target operations on large matrices. In our
case, computations are done on a large number of rather small matrices - typically
102 ∗ 102 -, therefore, no performance would be gained from using these libraries for
such small matrix sizes. Single Instruction Multiple Data (SIMD) parallelism can
nevertheless be drawn from the large number of matrix operations performed on
different small matrices.

This section describes how the algorithms presented in sec. 3.2.4 are mapped onto

36

3.3 GPU implementation

Figure 3.3.1: Example of gridification on the GPU.

the GPU’s architecture and what otpimizations were applied to accelerate compu-
tations.

3.3.1 Mapping computations on the GPU

Parallelism is present at two levels on a GPU:

• SIMD cores running simultaneously on the GPU;

• hardware threads running simultaneously within a single core.

Mapping computations on a GPU, a process also called gridification, consists
therefore in separating the given problem on these two levels of parallelism. The
problem must first be broken down into blocks; each block is executed on a single
SIMD core. Each block must then be divided into threads, which will be mapped
to the hardware threads of the SIMD core.

Several gridifications are implemented in QTLMap depending on the nature of
the computations and data access paterns. Fig. 3.3.1 shows an example of such a
gridification. In this example, each block handles computations on 32∗16 matrices -
described in Fig. 3.2.1 - corresponding to different genome positions and simulations.
A single thread handles the computations for a single genome position and a single
simulation.

37

Chapter 3 GPU accelerated QTL mapping

3.3.2 Optimizing GPU memory usage

As mentioned in sec. 3.2.3, the algorithm for QTL detection needs to be run on the
actual input dataset and a large number of randomly generated datasets in order
to test the results against the null hypothesis. In our case, these computations are
independent and an obvious data parallelism pattern can be exploited. The amount
of available memory on a GPU is nevertheless limited when compared to a CPU’s
memory. Therefore great care must be exercised when offsetting data to a GPU. The
amount of memory required for a single analysis can be divided into three categories:

• memory for input data;

• memory for intermediate results;

• memory for end results.

Input data consist in contingency matrices at each position and simulation - see
Fig. 3.2.1. The amount of memoryM required for contingency matrices for a linkage
analysis is given by the following formula:

M = nsim ∗ npos ∗ (1 + (1 + nqtl) ∗ ns) ∗ sizeof(DOUBLE)

Where nsim is a user set number of simulations to run, npos is the number of
positions to test on the linkage group, nqtl is the number of QTL to look for, ns is
the number of sires and sizeof(DOUBLE) is the size in bytes of a double precision
float on the given architecture. The previous formula is valid if one decides to store
integrally every incidence matrix. Memory optimizations can however be performed.
Each matrix contains a first set of population averages, which are independent of
both the position in the genome and the family, and a second set of polygenic effects,
which are independent of the genome position. All these effects can be factored out
and stored only once. The resulting amount of memory required Minput is now:

Minput = nsim ∗ npos ∗ nqtl ∗ ns ∗ sizeof(DOUBLE)

The amount of memory required for intermediate results depends on the type of
analysis and represents a significant part of the total memory requirements. For
large analyses, the input data can be sent to the GPU but computations are limited
by the low amount of memory available for intermediate results. In these cases,
computations are grouped into workloads, which are then handled sequentially on
the GPU. Each workload consists in a number of genome positions that can be
computed together within the GPU’s global memory. The optimal size Max_pos
for a workload is calculated using the following formula:

Max_pos = ⌊(Free_mem−Minput)/IRsize⌋

where Free_mem is the amount of memory available on the GPU,Minput is the total
amount of memory required for input data, and IRsize is the amount of memory

38

3.3 GPU implementation

required for intermediate results for a single genome position. Recent CUDA versions
allow data transfers between the CPU and the GPU to overlap with computations
on the GPU. A possible optimization would be to reduce the size of a workload to
half the available memory on the GPU and transfer a workload while the previous
one is being computed. Another optimization would be to partition the input data
into workloads as is done with intermediate results.

3.3.3 Reducing CPU/GPU transfers

Data transfers between the host (CPU) and the accelerator (GPU) are rather time
consuming and need to be optimized. Part of solving the linear system, as mentioned
in Algorithm 3.1, consists in determining confounding effects, i.e. effects correlated
with other effects. These effects are identified by a Choleski decomposition and need
to be removed from the dataset for further computations. Subsequent computations
are performed on a subset of each matrix - the structure of these matrices is described
in Fig. 3.2.1 - excluding confounding effects.

To avoid recopying the matrices, confounding effects are excluded using condi-
tional statements. Nevertheless, branching statements (such as ’if’, ’while’ etc) can
significantly reduce performances on a GPU. This is due to the fact that consecutive
Cuda threads are grouped together in warps of 16 threads. Whenever a branching
statement occurs, if threads within a single warp take different paths, both paths
are executed sequentially, thus breaking parallelism at this level. However, due
to the biological nature of the problem, diverging branches never occur since con-
founding effects are identical for each matrix. Therefore, the overhead induced by
adding these branching statements is negligible compared to the overhead induced
by transferring the matrices back and forth between the CPU and the GPU.

3.3.4 Optimizing homoskedastic analyses

Each step of the analysis, either using real data or a simulated set, shares a small
amount of computations with other steps. This is due to the fact that only perfor-
mance vectors are randomly generated for simulations. In order to avoid redundancy,
matrix multiplications involved in solving the linear system, described at line 4 in
Algorithm 3.2 are split into three phases:

• multiplications solely involving fixed effects, shared by all matrices (i.e. with-
out performance effects);

• multiplications involving performance effects, which differ from one dataset to
another, as well as fixed effects;

• multiplications solely involving performance effects.

The first phase is computed only once on the CPU, while the second and third
phases are computed for each dataset in parallel on the GPU. Computations that are

39

Chapter 3 GPU accelerated QTL mapping

common to each matrix multiplication are thus factored out. This represents a very
slight improvement over the previous CPU implementation and was only relevant
in the GPU implementation, where these computations are done simultaneously.
Dividing these computations also allows us to only keep one copy of the part common
to all matrices, while the rest is stored on the GPU in a compact form ; only the
relevant halves of the triangular matrices are kept contiguously in memory.

Phases two and three are computed in two distinct Cuda kernels on the GPU
in order to optimize memory accesses. Requirements imposed by the Cuda model
on memory access patterns to the GPU’s global memory are very strict and have
a tremendous impact on performances. Memory accesses in these two kernels are
optimized for coalescing either by reorganizing data on the GPU or by preloading
subsets of the data into shared memory. When breaking coalescing is unavoidable,
keeping data locality allows us to benefit from the small cache available on recent
graphics cards.

3.4 Experiments and results

Tests were run on machines with two quadcore Intel® Xeon® E5420 (12M Cache,
2.50 GHz, 1333 MHz FSB) processors. Multicore cpu tests were run on the Genotoul
platform (http://www.genotoul.fr). GPU tests were run on a machine equipped
with an Nvidia® C2050 card, with 448 cuda cores at 1150 MHz and 3 GB of main
memory. Each test consists of an LDLA analysis over simulated datasets from the
2011 QTL-MAS workshop (https://colloque.inra.fr/qtlmas). Two versions of
QTLMap are compared here:

• the previous multicore CPU version running with 8 threads [FMG+10];

• the new GPU version in double precision.

For the CPU executions, each of the 8 threads had a dedicated CPU core. Input
parameters ranged from 500 to 10000 for the number of simulations, from 9 to 998
for the number of genome positions, and from 5 to 20 for the number of sires.

3.4.1 Execution times

Fig. 3.4.1, Fig. 3.4.2, and Fig. 3.4.3 show the evolution of execution times for both
the CPU and the GPU versions over the number of simulations, the number of half-
sib families and the number of genome positions respectively. Times for the CPU
version are given on the left Y-axis, while times for the GPU version are given on
the right Y-axis.

The amount of computations required for the analysis grows linearly with the
number of simulations (see Fig. 3.4.1) and the number of considered genome positions
(see Fig. 3.4.3). These linear growths were expected, given the structure of the
algorithm - lines 2 and 3 of Algorithm 3.1. On the other hand, run times grow

40

http://www.genotoul.fr
https://colloque.inra.fr/qtlmas

3.4 Experiments and results

Figure 3.4.1: Evolution of the execution time with respect to the number of sim-
ulations.

polynomially with the number of sires - the polynome depends on the type of analysis
performed - (see Fig. 3.4.2). Tab. 3.1 shows the values and ranges of values for fixed
and variable parameters used in Fig. 3.4.1, Fig. 3.4.2, and Fig. 3.4.3. The most time
consuming analysis, using 10000 simulations, 20 sires, and covering 998 genome
positions, took more than 3 weeks to compute on the CPU, and slightly more than
11 hours on the GPU.

3.4.2 Speedups

Fig. 3.4.4 (respectively Fig. 3.4.5 and Fig. 3.4.6) shows the evolution of the speedups
between the two versions of QTLMap with respect to the number of simulations
(respectively to the number of sires and to the number of genome positions).

Tab. 3.2 shows values and ranges of values for fixed and variable parameters used
in Fig. 3.4.4, Fig. 3.4.5, and Fig. 3.4.6. Fig. 3.4.4, Fig. 3.4.5, and Fig. 3.4.6 show that
speedups remain stable with increasing values in all three dimensions - number
of genome positions, number of simulations and size of the population. Overall,
the GPU version performs about 70 times faster than the multicore CPU version.
This speedup, however, cannot entirely be attributed to the use of a graphics card.
Indeed, the CPU version does not benefit from certain optimizations applied specif-
ically to the GPU version - one of which is described in sec. 3.3.4 -, nor does it take
advantage of SSE instructions. Optimizing the CPU version would probably reduce

41

Chapter 3 GPU accelerated QTL mapping

Figure 3.4.2: Evolution of the execution time with respect to the number of half-sib
families.

Figure 3.4.3: Evolution of the execution time with respect to the number of genome
positions.

42

3.5 Conclusion

Figure 3.4.4: Speedup with respect to the number of simulations.

its run times by a factor of 3 or 4.

The multicore CPU version of QTLMap is not designed to run optimally for low
numbers of genome positions. In the multicore CPU version of QTLMap, data
structures are allocated and initialized for each simulation and then amortized over
computations for each genome position. On the contrary, in the GPU version of
QTLMap, a single set of data structures is allocated and initialized for a large set of
simulations and then amortized over both genome positions and simulations. Con-
sequently, large speedups are observed on Fig. 3.4.6 between the GPU and the CPU
versions for low numbers of genome positions. These speedups are not representa-
tive of the true acceleration obtained by porting QTLMap on the GPU; they simply
illustrate the fact that the CPU version does not perform optimally for low numbers
of genome positions.

3.5 Conclusion

We propose a new version of existing software QTLMap. QTLMap is a tool for
QTL detection, a computationally heavy procedure. This new version takes ad-
vantage of GPUs to speed up computations. Computations using this new version
are between 50 and 75 times faster than computations using the previous multi-
core implementation, while maintaining the same results and precision. Reduced
runtimes allow geneticists to consider more precise and time consuming analyses by

43

Chapter 3 GPU accelerated QTL mapping

Figure 3.4.5: Speedup with respect to the number of half-sib families.

Figure 3.4.6: Speedup with respect to the number of genome positions.

44

3.5 Conclusion

of simulations # of sires # of genome positions

Fig. 3.4.4 500− 10000 20 998
Fig. 3.4.5 5000 5− 20 998
Fig. 3.4.6 5000 20 9− 998

Table 3.2: Values and ranges of values for fixed and variable parameters used in
Fig. 3.4.4, Fig. 3.4.5, and Fig. 3.4.6.

increasing the number of simulations or the number of studied genome positions.
Reduced runtimes also allow geneticists to consider new analyses, such as multi-
QTL analyses. All versions of QTLMap are available under CeCILL licences at
http://www.inra.fr/qtlmap/.

Future work include the promotion and use of parallel computing in statistical
genetics, focusing on two applications of the Single Nucleotide Polymorphism (SNP)
chip technology:

• Dissection of the genetic architecture of characters through Genome Wide
Association Studies (GWAS);

• Genomic Selection (GS).

SNP chip technology now makes possible the genotyping on millions of SNPs
of tens or hundreds of thousands of individuals, thus increasing the demand for
much faster computations. Faster computations are needed both for implementing
more precise genetic models in research of trait genetic determinants, and for the
industrial exploitation of genomic data, with production of statistical information
at regular time intervals.

The algorithms used in QTLMap were not originally thought in parallel. They
however exhibit a high degree of parallelism and proved to be perfect candidates for
a GPU implementation. The large number of identical and independent operations
to execute are ideal to map onto the SIMD architecture of the GPU. This ideal case
is far from being the norm and in many cases, one has to either discard the GPU as
a potential accelerator for a specific problem or where possible, find a new algorithm
exhibiting more parallelism.

of simulations # of sires # of genome positions

Fig. 3.4.1 500− 10000 20 998
Fig. 3.4.2 10000 5− 20 998
Fig. 3.4.3 10000 20 9− 998

Table 3.1: Values and ranges of values for fixed and variable parameters used in
Fig. 3.4.1, Fig. 3.4.2, and Fig. 3.4.3.

45

http://www.inra.fr/qtlmap/

Chapter 3 GPU accelerated QTL mapping

46

4 Efficient Multi-GPU Computation
of All-Pairs Shortest Paths

We describe a new algorithm for solving the all-pairs shortest-path (APSP) problem
for planar graphs and graphs with small separators that exploits the massive on-chip
parallelism available in today’s Graphics Processing Units (GPUs). Our algorithm,
based on the Floyd-Warshall algorithm, has near optimal complexity in terms of the
total number of operations, while its matrix-based structure is regular enough to
allow for efficient parallel implementation on the GPUs.

By applying a divide-and-conquer approach, we are able to make use of multi-node
GPU clusters, resulting in more than an order of magnitude speedup over fastest
known Dĳkstra-based GPU implementation and a two-fold speedup over a parallel
Dĳkstra-based CPU implementation.

4.1 Introduction

Shortest-path computation is a fundamental problem in computer science with ap-
plications in diverse areas such as transportation, robotics, network routing, and
VLSI design. The problem is to find paths of minimum weight between pairs of
nodes in edge-weighted graphs, where the weight |p| of a path p is defined as the
sum of the weights of all edges of p. The distance between two nodes v and w is
defined as the minimum weight of a path between v and w.

There are two basic versions of the shortest-path problem: in the single-source
shortest-path (SSSP) version, given a source node s, the goal is to find all distances
between s and the other nodes of the graph; in the all-pairs shortest-path (APSP)
version, the goal is to compute the distances between all pairs of nodes in the graph.
While the SSSP problem can be solved very efficiently in nearly linear time by using
Dĳkstra’s algorithm [Dĳ59], the APSP problem is much harder computationally.

Two main families of algorithms exist to solve the APSP problem exactly: the
first family is based on the Floyd-Warshall algorithm [CSRL01], while the second de-
rives from Dĳkstra’s algorithm. The Floyd-Warshall’s approach consists in iterating
through every vertex vk of the graph to improve the best known distance between
every pair of vertices (vi, vj) - see Algorithm 4.1. The complexity of this approach is
O(|V |3), regardless of the density of the input graph. While the algorithm works for
arbitrary graphs (including those with negative edge weights), its cubic complexity
makes it inapplicable to very large graphs.

Given that the Dĳkstra’s algorithm solves the SSSP problem, it is possible to

47

Chapter 4 Efficient Multi-GPU Computation of All-Pairs Shortest Paths

solve the APSP problem by simply running the Dĳsktra’s algorithm over all source
vertices in the graph (see Algorithm 4.2). When using min-priority queues, the
complexity of this approach is O(|E| + |V | log |V |) for the SSSP problem, where V
and E are the sets of the vertices and edges, respectively. For the APSP problem,
the total complexity is thus O(|V | ∗ |E|+ |V |2 log |V |), which becomes O(|V |3) when
the graph is complete, but only O(|V |2 log |V |) when |E| = O(|V |), making this
approach faster than Floyd-Warshall for sparse graphs.

Solving the All-Pairs Shortest Path problem is important not only in transportation-
related problems, but in many other domains. It is the first step to obtaining several
network measures that are of importance in domains such as social network anal-
ysis or in bioninformatics. One such measure is the betweenness centrality, which
is defined, for any vertex v, as the number of shortest paths between all pairs of
vertices that pass through v, and is a measure of a v’s centrality (importance) in
the network.

Some algorithms use the centrality of the nodes in a network in order to compute
its community structure. Furthermore, in several applications, the networks that
need to be analyzed may have negative weights, and hence one needs an algorithm
that solves the APSP problem for graphs with real (positive as well as negative)
weights. In online social networks, for instance, negative weights may be used to
indicate antagonism between two individuals [LHK10] or even conflicts and alliances
between two groups [TB09]. Causal networks in bioinformatics also use negative
edges to represent inhibitory effects [IDN11].

In this chapter, we present an algorithm for solving the APSP problem for graphs
with real weights that exploits the great degree of parallelism available in today’s
Graphics Processing Units (GPU). GPUs and other stream processors were originally
developed for intensive media applications and thus advances in the performance
and general purpose programmability of these processors have hitherto benefited
applications that exhibit computational similarities to graphics applications, namely
high data parallelism, high computational intensity, and data locality.

However, many theoretically optimal graph algorithms exhibit few of these prop-
erties. Such algorithms often use efficient data structures storing as little redun-
dant information as possible, resulting in highly unstructured data and un-coalesced
memory access making them less-than-ideal candidates for streaming processor ma-
nipulations. Nevertheless, given the wide applicability of graph-based approaches,
the massive parallelism afforded by today’s graphics processors is too compelling to
ignore; current GPUs support hundreds of cores per chip and even future CPUs will
be many core.

Our approach aims to exploit the structure of the input graphs and specifically
their partitioning properties. Our algorithm will be especially efficient if the input
graph has a good separator, which means (informally) that it can be divided into
two or more equal parts removing o(n) vertices or edges, where n is the number
of the vertices of the graph. Such graphs are frequently seen in road networks,
geometric networks and social networks; all planar graphs also satisfy this property.
To harness the parallel computing power for solving the path problem on such

48

4.1 Introduction

Algorithm 4.1 Floyd-Warshall algorithm.

1 INPUT: A graph G(V,E) , where V i s a s e t o f v e r t i c e s and E a s e t o f
weighted edges between these v e r t i c e s .

OUTPUT: The d i s t anc e o f the s h o r t e s t path between any two p a i r s o f
v e r t i c e s in G.

3 f o r each ver tex v in V
d i s t [v] [v] = 0 end f o r f o r each edge (u , v) in E

5 d i s t [u] [v] = w(u , v) // the weight o f the edge (u , v)
end f o r

7 f o r k from 1 to |V|
f o r i from 1 to |V|

9 f o r j from 1 to |V|
d i s t [i] [j] =

11 min(d i s t [i] [j] , d i s t [i] [k] + d i s t [k] [j])
end f o r

13 end f o r
end f o r

15 re turn d i s t

Algorithm 4.2 Dĳkstra’s Single Source Shortest Path algorithm.

1 INPUT: A graph G(V,E) , where V i s a s e t o f v e r t i c e s and E a s e t o f
weighted edges between these v e r t i c e s . A source ver tex from V.

OUTPUT: The d i s t anc e o f the s h o r t e s t paths between the source ver tex
and every ver tex in V.

3 f o r each ver tex v in V
d i s t [v] = i n f i n i t y

5 prev ious [v] = undef ined
end f o r

7 d i s t [source] = 0
Q = V

9 whi le Q i s not empty
u = vertex in Q with s m a l l e s t d i s t ance in d i s t []

11 Q = Q\{u}
i f d i s t [u] = i n f i n i t y

13 break
f o r each neighbor v o f u in Q

15 a l t = d i s t [u] + dist_between (u , v)
i f a l t < d i s t [v]

17 d i s t [v] = a l t
prev ious [v] = u

19 decrease−key v in Q
end i f

21 end f o r
end whi l e

23 re turn d i s t

49

Chapter 4 Efficient Multi-GPU Computation of All-Pairs Shortest Paths

graphs, we partition the input graphs into an appropriate number of parts and solve
the APSP on each part and then use the partial solutions to compute the distances
between all pairs of vertices in the graph.

Our algorithm, based on the Floyd-Warshall algorithm, has near quadratic (i.e.
near optimal) complexity with respect to the number of nodes, while its matrix-
based structure is regular enough to allow for efficient parallel implementation on
the GPUs. By applying a divide-and-conquer approach, we are able to make use
of multi-node GPU clusters, resulting in more than an order of magnitude speedup
over fastest known (Dĳkstra-based) GPU implementation and a two-fold speedup
over a parallel Dĳkstra-based CPU implementation.

In what follows, sec. 4.2 presents recent parallel implementations for solving the
APSP problem; in sec. 4.3, we detail the principles of our partitioned algorithm;
sec. 4.4 focuses on the structure of the data and the computations and how the
algorithm is implemented on large multi GPU clusters. Finally, sec. 4.5 shows the
results of two experiments and possible ways to improve our implementation.

4.2 Related Work

When considering a distributed GPU implementation, both the Floyd-Warshall and
Dĳkstra’s approaches have advantages and drawbacks. Though slower for sparse
graph, a Floyd-Warshall approach has the advantage of having regular data access
patterns that are identical to those of a matrix multiplication. The amount of
computations required for a given graph, using a Floyd-Warshall approach, solely
depends on the number of vertices in the graph; therefore, balancing workloads
between different processing units can be achieved easily. Dĳkstra’s approach is
much faster for sparse graphs but, to achieve best performance, requires complex
data structures which are difficult to implement efficiently on a GPU.

Implementing parallel solvers for the APSP problem is an active field of research.
[HN07] proposed GPU implementations of both the Dĳkstra and Floyd-Warshall
algorithms to solve the APSP problem and compared them to parallel CPU imple-
mentations. Both approaches however require that the whole graph fit in the GPUs
memory. They report solving APSP for a 100k vertex graph in around 22 minutes
on a single GPU. A cache-efficient parallel, blocked version of the Floyd-Warshall
algorithm for solving the APSP problem in GPUs is described in [KK08]. While
the graphs mentioned in [KK08] are larger than what would fit onto GPU on-board
memory, the largest graph instances described in the paper are still only around 10k
vertices.

[BGB10] proposed a blocked-recursive Floyd-Warshall approach. Their imple-
mentation, running on a single GPU, shows a speedup of 17-45 when compared to
a parallel CPU implementation and outperforms both GPU implementations from
[HN07]. Their blocked-recursive implementation also requires that the entire graph
fit in the GPU’s global memory; therefore, they only report timings for graphs with
up to 8k vertices. [OIH12] proposed an improvement over the GPU implementation

50

4.3 Algorithm details

of Dĳkstra for APSP from [HN07] by caching data in on-chip memory and exhibit-
ing a higher level of parallelism. Their approach showed a speedup of 2.8− 13 over
Dĳkstra’s SSSP-based method of [HN07]. [MNS12] also proposed a blocked Floyd-
Warshall algorithm that they implemented for computations on a single GPU and
a multicore CPU simultaneously. Their implementation handles graphs with up to
32k and achieves near peak performance. Only [OATLGE13] report solving APSP
on large graphs - up to 1024k vertices. Using an SSSP-based Dĳkstra approach, their
implementation runs on a multicore CPU and up to 2 GPUs simultaneously. Recent
experimental work on parallel algorithms for solving just the SSSP problem for large
graph instances using a ∆-stepping approach [MS03] is described in [MBBC07].

Our Contribution: We propose a novel APSP algorithm and its parallel implemen-
tation to compute all shortest distances between all pairs of vertices of a graph with
good partitioning properties. To make the algorithm scalable to large graphs, our
implementation uses a combination of shared and distributed-memory GPU com-
puting; the current implementation targets executions on large clusters of GPUs in
order to handle graphs with up to a million vertices. Experimentations showed that
the trillion shortest distances of a million vertex graph can be found in less than 25
minutes using 64 cluster nodes with 2 GPUs each.

We view our contributions in the following:

1. We develop a new Floyd-Warshall-based algorithm that is simultaneously
work-efficient, has a high-degree of parallelism, and is build upon matrix op-
erations; we are aware of no previous APSP algorithm with such properties.

2. Our implementation is using massive parallelism; both fine-grained at GPU
level as well as coarse-grained employing up to 300 GPUs.

3. Our algorithm beats the previous algorithms by orders of magnitude with
respect to running times using the same or similar computational resources.

4. In addition to the fact that our algorithm is faster than Dĳkstra-based algo-
rithms, it also has the advantage that it works with arbitrary-negative as well
as positive-weights.

5. The matrix structure of our algorithm will allow it to get additional efficiency
boost from any pipelined vector features not available in current GPUs.

4.3 Algorithm details

In this section we give the overall structure and the idea of the algorithm and describe
its individual steps, but without discussing details of the GPU implementation. We
start with an overview of the algorithm and then give details on each of its steps.

51

Chapter 4 Efficient Multi-GPU Computation of All-Pairs Shortest Paths

4.3.1 Overview

Our algorithm takes as input a weighted directed or undirected graph G with n
vertices and computes the distances between all pairs of vertices of G. We currently
do not output routing information, which can be used to reconstruct the shortest
paths, but computing such an information requires a minor modification in the
algorithm and would increase the run times and memory requirements by at most
a constant factor of two.

Our algorithm is based on a divide-and-conquer approach and consists of four
steps (see Algorithm 4.3). In the first step, the original graph G is partitioned into k
components of roughly equal sizes using a min-cut like heuristic - our implementation
uses a k-way partitioning method from the METIS library [KK98b]. In the second
step, the APSP problem is solved on each component independently; in the third
step the distance information computed for the components is used to compute
distances between all pairs of boundary vertices of G (a boundary vertex is one
that is adjacent to a vertex from another component); and in the final step the
information obtained in steps two and three is combined to compute shortest paths
between non-boundary pairs of vertices of G.

We will use the following notation: disti(v, w) will denote the (approximate) value
of the distance between v and w computed in Step i, for i = 2, 3, 4, and distG(v, w)
will denote the (exact) distance in G. Next we will describe the steps in more detail.

4.3.2 Step 1: Graph decomposition

In Step 1 the input graph G is divided into k components of roughly equal sizes. The
decomposition is done be identifying a set of edges (a cut set) whose removal from
G results into a disconnected graph of k parts we call components. The set of all
components is called a partition. Note that while by the standard definition in graph
theory a component is connected, this is not a requirement in our case (although
in the typical case our components will be connected). A requirement is that every
vertex in G belongs to exactly one component of the partition. Moreover, in order
for the resulting APSP algorithm to be efficient, the cut set of edges should be small.
Not all classes of graphs have such partitions, but some mportant classes do. These
include the class of planar graphs, the class of graphs of low genus, some geometric
graphs, and graphs corresponding to networks with good community structure.

4.3.3 Step 2: Computing distances within each graph
component

Step 2 involves computing the distances in each component of the partition P of G
using a conventional algorithm, e.g., the Floyd-Warshall’s or Dĳkstra’s algorithm.
For each component C ∈ P and any two vertices s and t of C, the output of this step
is the minimum length of a path between s and t that is restricted to lie entirely in
C. Hence, the distance computed between s and t may be larger that the distances

52

4.3 Algorithm details

Algorithm 4.3 Partitioned All-Pairs Shortest Path algorithm

1 INPUT: A graph G(V,E) , where V i s a s e t o f v e r t i c e s and E a s e t o f
weighted edges between these v e r t i c e s .

OUTPUT: The d i s t anc e o f the s h o r t e s t path between any two p a i r s o f
v e r t i c e s in G.

3 f unc t i on partitioned_APSP (G)
// Step 1

5 f o r each Component C in G
Floyd−Warshall (C) %compute_APSP(C)

7 end f o r
// Step 2

9 Graph BG = extract_boundary_graph (G)
compute_apsp (BG)

11 // Step 3
f o r each Component C in G

13 Floyd−Warshall (C) %compute_APSP(C)
end f o r

15 // Step 4
f o r each Component C1 in G

17 f o r each Component C2 in G
compute_apsp_between_components (C1 , C2)

19 end f o r
end f o r

21 end func t i on

53

Chapter 4 Efficient Multi-GPU Computation of All-Pairs Shortest Paths

between s and t in G, if there is a shorter path between them that goes out of C.
Nevertheless, as we will show in the next subsections, the computed approximate
distances can be used to efficiently compute the accurate distances in G.

In order to implement this step, for each component C ∈ P , a subgraph is ex-
tracted containing vertices from the current component and existing edges between
these vertices. Any APSP algorithm can then be applied in order to compute dis-
tances in each of these sub-graphs. This step thus has k independent tasks - one for
each sub-graph - that can be computed in parallel. Since each component contains
roughly n/k vertices, using an algorithm whose complexity solely depends on the
number of vertices allows these tasks to be computed in roughly the same number of
operations. This property can be advantageous depending on the type of parallelism
that we want to exploit.

4.3.4 Step 3: Computing distances in the boundary graph

In step 3, we first extract the boundary graph BG of G with respect to the partition
P . The vertices of BG are defined to be all boundary vertices of G. There are
two types of edges of BG. The first type of edges are edges in G between boundary
vertices from different components. The weights on these edges are the same as their
weights in G. The second type of edges, which we call virtual edges, are between
boundary vertices in the same components - for any two boundary vertices v and w
belonging to the same component C there is an edge (v, w) in BG with weight equal
to the distance between v and w computed in Step 2. Hence, BG is a compressed
version of the original graph, where all non-boundary vertices have been removed,
and instead of them shortest path information encoded in the weights of the new
edges of BG. Having constructed BG, we then solve for it the APSP problem using
a conventional APSP algorithm.

Despite the fact that the distances encoded in the weights of the new edges of BG
are only approximate, the distances between the boundary nodes of BG computed
at the end of Step 3 are exact. The next lemma formally establishes this fact.

Lemma 1. For any two boundary vertices v and w, the distance between v and w
in BG is equal to their distance in G.

Proof. Let p = (v = x1, x2, . . . , xl = w) be a shortest path inG and let (xb1 , xb2 , . . . , xbj)
be the subsequence of all boundary vertices in p, i.e., 1 = b1 < · · · < bj = l and there
are no boundary vertices on p between xbi and xbi+1

. Hence p′ = (xb1 , xb2 , . . . , xbj)
is a path in BG. We are going to estimate the length of p′.

Let h = (xbi , xbi+1
) be an edge of p′. If xbi and xbi+1

are from different components,
then, by the definition of BG, h is also an edge of G with the same weight as in
BG. If xbi and xbi+1

are from the same component C (Figure Fig. 4.3.1), then h
corresponds to a subpath q = (xbi , xbi+1, . . . , xbi+1

) of p consisting of vertices from
only C, by the assumption that p′ contains all the boundary vertices of p. Hence,
the weight of h and the length of q are the same. By induction on the number of the
edges of p′, p and p′ have the same length, which implies that the distance between

54

4.3 Algorithm details

Cxbi

xbi+1

xbi−1

xbi+2

xbi+1

xbi+2

boundary vertices

non-boundary vertices

q

Figure 4.3.1: Illustration to the proof of Lemma Theorem 1. The shaded region
illustrates a component C with the subpath q = (xbi , xbi+1, . . . , xbi+1

) of p inside
it.

v and w in BG is no greater than the distance between them in G. The reverse
inequality is obtained in the same way, namely, by showing that any path in BG
can be transformed into a path of the same length in G by replacing each virtual
edge of the former with the corresponding shortest path computed in Step 2. The
claim follows.

This step presents no apparent parallelism, since only one task needs to be com-
puted. This absence of parallelism at this step may be a major bottleneck for a
coarse-grain parallel implementation as boundary graphs can be very large. This
issue can however be mitigated by applying our current algorithm recursively on the
boundary graph. Boundary graphs are nevertheless denser than the original graph
with the addition of virtual edges at Step 2. Boundary graphs are therefore less
easily partitioned than input graphs - the number of edges cut per node for a given
number of components will be higher.

4.3.5 Step 4: Distances between non-boundary vertices

In Step 4 we compute distances where at least one vertex is non-boundary using the
information computed in Steps 2 and 3. In order to compute the distance between
two non-boundary vertices vi and vj from (not necessarily different) components Ci
and Cj respectively, we need to find boundary vertices bi and bj from components Ci
and Cj, respectively, that minimize the sum dist2(vi, bi) + dist3(bi, bj) + dist2(bj, vj),
where dist2 and dist3 are the distances computed in Step 2 and Step 3, respectively.
By our analysis above, dist3 is the same as the distance in G, but dist2 is not. We
need therefore to prove that such a method produces accurate distances in G.

Lemma 2. Let vi and vj be two vertices from different components Ci and Cj,

55

Chapter 4 Efficient Multi-GPU Computation of All-Pairs Shortest Paths

respectively. Define Bi = Ci ∩BG, Bj = Cj ∩BG, and

dist4(vi, vj) = min{dist2(vi, bi) + dist3(bi, bj) + dist2(bj, vj)

| bi ∈ Bi, bj ∈ Bj}. (4.3.1)

Then dist4(vi, vj) is equal to the distance in G between vi and vj.

Proof. Let p be a shortest path in G between vi and vj. Since vi and vj belong to
different components, then p will contain at least one vertex from Bi and at least
one vertex from Bj. Let bi be the first vertex on p from Bi and bj be the last vertex
on Bj (Figure Theorem 2). Let p1 be the portion of p between vi and bi, p2 be the
portion between bi and bj, and p3 – the portion between bj and vj. Since any subpath
of a shortest path is also a shortest path between the corresponding endpoints, p1
is a shortest path in G between vi and bi, i.e., |p1| = distG(vi, bi). Moreover, by the
definition of bi as the first boundary point of Ci on p, p1 is entirely in Ci and hence
|p1| = dist2(vi, bi). In the same way one can prove that |p2| = dist2(bj, vj). Finally,
|p3| = distG(bi, bj) = dist3(bi, bj) by Lemma Theorem 1. Hence

|p| = |p1|+ |p2|+ |p3| = dist2(vi, bi) + dist3(bi, bj) + dist2(bj, vj).

By the definition of dist4(vi, vj) as a minimum over all bi ∈ Bi, bj ∈ Bj, the last
equality implies dist4(vi, vj) ≤ distG(vi, vj). But since dist4(vi, vj) is a length of a
path between vi and vj, while distG(vi, vj) is the length of a shortest path, then
dist4(vi, vj) ≥ distG(vi, vj). Combining the last two inequalities we infer that none
of them can be a strict inequality, i.e., dist4(vi, vj) = distG(vi, vj).

Lemma 3. Let vi and vj be two vertices from component Ci. Then distG(vi, vj) =
min{dist2(vi, vj), dist4(vi, vj)}, where dist4 is as defined in Lemma Theorem 2.

Proof. Consider the following two cases. If p leaves Ci, then p should cross the
boundary Bi at least twice. Define bi and bj as the first and last vertex from Bi on
p. Then exactly the same arguments as in Lemma Theorem 2 apply to the three
paths into which bi and bj divide p. In this case distG(vi, vj) = dist4(vi, vj). If p
does not leave p, then Step 2 will compute the accurate distance in G between vi
and vj, and therefore distG(vi, vj) = dist2(vi, vj).

The lemmas imply that the distances in G between all pairs of vertices where at
least one of the vertices is non-boundary can be computed by using (eq:step4). Since
we don’t know which pair (bi, bj) of boundary nodes corresponds to the minimum
in (eq:step4), we have to try all such pairs, resulting in total of |Bi||Bj| operations
needed for computing distG(vi, vj). For a graph with k components, we need to
compute the distances between pairs in any pair of components; we therefore have
k2 independent tasks. Components being of roughly equal sizes, these tasks also
represent the same amount of computations. This step is the most computationally
intensive, but presents massive, already balanced, coarse-grain parallelism.

56

4.4 Implementation

vi

bi

bj

vj

Ci Cj

p

Figure 4.3.2: Illustration to the proof of Lemma Theorem 2. Note that while in
the figure both vi and vj are non-boundary, the proof does not make such an
assumption.

4.4 Implementation

In this section, we first focus on how operations described in the previous section
translate in terms of data structures. We then detail the two-level parallel aspect
of our implementation. We finally describe the current main memory bottleneck of
our approach.

4.4.1 Data organization

A simple way to represent a weighted graph is to use an adjacency matrix. For
very large graphs however, such a memory intensive representation is often avoided.
Instead, large sparse graphs are stored using lists; sub-matrices, corresponding to
sub-graphs, are extracted from these lists. For simplicity reasons, we can however
assume that a large adjacency matrix representation is available and keep in mind
that sub-matrix extraction operations are slightly more costly than they appear.
We are also taking into account the fact that, even when the input graph (matrix)
is sparse, the output is always a dense matrix as it encodes the distances between
all pairs of vertices.

Partitioning the graph is performed using a k-way partitioning routine from the
METIS library [KK98b]. The result is a partitioning of the graph into k parts
such that the number of edges with endpoints in different parts is minimized. Since
that partitioning problem is NP-hard, METIS computes an approximation based
on heuristics. Vertices are then reordered so that vertices belonging to the same
component are numbered consecutively starting with the boundary vertices - see
Figure Fig. 4.4.1.

Diagonal sub-matrices contain information about sub-graphs for each component;
non-diagonal sub-matrices contain known shortest distances between components.
Within each diagonal sub-matrix, the top left sub-matrix contains information about

57

Chapter 4 Efficient Multi-GPU Computation of All-Pairs Shortest Paths

Part 1

Part 2

Part 3

Part 4

Part 3
3

1

3

1

Other
 vertices

Boundary
vertices

Boundary

Other

Other vertices

Figure 4.4.1: Adjacency matrix after reordering of the vertices. Vertices from the
same component are stored contiguously starting with boundary vertices (in red).

the sub-graph induces by boundary vertices of the component; the bottom right
sub_matrix contains information about the sub-graph induced by non-boundary
vertices of the component and the rest of the diagonal sub-matrix contains known
shortest distances between boundary and non-boundary vertices.

For Step 2, diagonal sub-matrices are extracted; a Floyd-Warshall approach is
then used to compute shortest distances. The Floyd-Warshall algorithm guarantees
that the total number of operations for a single matrix solely depends on the size
of the matrix. Since all components of the graph have roughly the same number of
vertices, all diagonal sub-matrices represent roughly the same amount of operations.

For Step 3, the boundary matrix is extracted – see Figure Fig. 4.4.2. We then
apply the same algorithm recursively reducing the number k of component at each
iteration. Recursion stops when k = 1 or when the boundary graph becomes so
dense that it does not have good partitioning (in terms of number of boundary
vertices). At that point the APSP subproblem is solved using Floyd-Warshall.

For Step 4, we compute shortest distances between every pair of distinct com-
ponents. This process corresponds to filling non-diagonal sub-matrices. For two
components I and J , filling the associated, I to J , non-diagonal sub-matrix requires
information from three sub-matrices:

• the non-diagonal sub-matrix being filled. We are particularly interested in
the part of the sub-matrix containing shortest distances between boundary
vertices from component I to boundary vertices from component J .

• the diagonal sub-matrix corresponding to component I - located in the same
row as the non-diagonal sub-matrix being filled. We are particularly interested
in the part of this diagonal sub-matrix that contains shortest distances from
any vertex of component I to boundary vertices.

• the diagonal sub-matrix corresponding to component J - located in the same
column as the non-diagonal sub-matrix being filled. We are particularly in-

58

4.4 Implementation

Figure 4.4.2: The boundary matrix, here in red, is scattered over the adjacency
matrix. Step 3 consits in reconstituting the boundary matrix and computing
shortest distances.

terested in the part of this diagonal sub-matrix that contains shortest dis-
tances from boundary vertex of component J to any vertex - see left of Fig-
ure Fig. 4.4.3.

Shortest distances from vertices from component I to vertices from component J
are obtained by multiplying the three parts of sub-matrices - as shown on the right
of Figure Fig. 4.4.3 - where (+, ∗) operations are replaced with (min,+) operations.

4.4.2 Work analysis

Next we will try to estimate the work (number of operations) of the algorithm. Since
the work depends on the partitioning properties of the input graph, we will do the
analysis for the case of planar bounded-degree graphs. For that class of graphs,
there exists a partitioning of any n-vertex graph into k parts such that the number

of boundary vertices in each part is O(
√

n/k) [Fre87]. We make the assumption that
METIS produces a partition with such properties. Although the partition METIS
produces does not come with theoretically guaranteed bounds, it works in practice
better than alternative algorithms that have such guarantees, which is the reason
we chose it. The time needed for Step 1 is O(n log n).

In Step 2, we have k subtasks of computing APSP on graphs of size O(n/k)
using an algorithm of cubic complexity, so the number of operations for that step is

59

Chapter 4 Efficient Multi-GPU Computation of All-Pairs Shortest Paths

Part I

Part J

.

.

.

. . .
I

J

* *

d b
2,
j

d b
1,
b

2
 d i , b

1

Figure 4.4.3: Computations associated to each non-diagonal sub-matrix uses data
from 2 diagonal sub-matrices and part of the non-diagonal sub-matrix itself. Com-
putations are similar to matrix multiplications.

k(n/k)3 = n3/k2.

In Step 3, we have to solve the APSP on a graph of size O(k
√

n/k) = O(
√
kn).

Using an algorithm with complexity O(Nα), where N is the number of the vertices
of the subgraph, the number of operations for this step is O((kn)α/2). For Step 4,
we have k2 tasks and each tasks involves the multiplication of three matrices with

dimensions n/k×
√

n/k,
√

n/k×
√

n/k, and
√

n/k× n/k, respectively. Computing
the product of the first and the second matrix takes

O((n/k)
√

n/k
√

n/k) = O((n/k)2)

operations and finding the product of the resulting n/k×
√

n/k matrix and the third
matrix takes

O((n/k)
√

n/k(n/k)) = O((n/k)5/2)

operations, which is the dominating term. Hence, the total number of operations
for Step 4 is

O(k2(n/k)5/2) = O(n5/2/k1/2).

The total number of operations is the sum of the numbers computed for Steps 1,
2, 3, and 4 and is minimized when (kn)α/2 = n5/2/k1/2 or kα+1 = n5−α. If in Step 3
Floyd-Warshall is used, then α = 3 and k = n1/2 is optimal, resulting in a bound
of O(n9/4) for the total number of operations, slightly worse than the theoretical
lower bound of O(n2). Our implementation in fact uses recursion in Step 3 so the
total complexity is even closer to quadratic, but we will skip the details of the exact
evaluation since the analysis gets much more complex.

60

4.4 Implementation

4.4.3 Parallel implementation

Our implementation specifically targets large clusters of hybrid systems - possessing
both a multicore CPU and manycore GPUs. This implementation exploits paral-
lelism at two levels. At a coarse-grain level, large independent tasks - corresponding
to computations of diagonal and non-daigonal sub-matrices - can be performed si-
multaneously on different nodes of a cluster. At a fine-grain level, each task is
computed on a massively parallel GPU. Remaining CPU cores handle tasks that are
not suited for GPUs: input/output file operations and communication with other
nodes.

Coarse-grain parallelism

Steps 2 and 4 of our algorithm exhibit interesting parallel properties: a large number
of balanced, independent tasks; k tasks for Step 2 and k2 − k for Step 4. Using the
MPI standard [SOW+95], these tasks are distributed accross nodes of the cluster
for simultaneous computations. One master node is in charge of reading the input
graph file, calling the partitioning routine and sending tasks to a number of slave
nodes equal to the number of available GPUs on the cluster. Depending on the
cluster’s topology, the number of master and slave nodes will not match the number
of physical nodes used on the cluster if each cluster node contains more than one
GPU.

For Step 3, the large initial boundary matrix is computed recursively using the
same algorithm with decreasing values for the number k of components. The amount
of independent tasks therefore decreases with k, until a single, smaller boundary
matrix is obtained and computed by a single slave node.

Fine grain parallelism

Upon receiving a task from the master node, each slave node then sends the corre-
sponding data to its GPU for computations, retrieves results and send them back to
the master node. Tasks are of two different kinds: diagonal workloads, which consist
in computing shortest distances over a small subgraph, and non-diagonal workloads,
which consist in multiplying three matrices.

Computations of diagonal workloads are implemented on the GPU using a blocked-
recursive Floyd-Warshall approach developped by [BGB10] and adapted for non-
power of 2 matrices. Non-diagonal workloads require less synchronization and can
be implemented using a fast matrix-multiplication approach derived from [Vol10]
and adapted for (min,+) operations.

In this configuration, each physical node on the cluster makes use of as many
CPU cores as there are available GPUs. If more CPU cores are available than GPUs,
computational power is still available. On slave nodes, remaining CPU cores are used
for outputting final results to disk. On large clusters, communication between the
master node and slave nodes can become a bottleneck, leaving slave nodes idle while
waiting for the master node to be available. In order to increase the availability of

61

Chapter 4 Efficient Multi-GPU Computation of All-Pairs Shortest Paths

the master node, a single CPU thread is used to initiate communications with slave
nodes while remaining CPU cores handle the rest of the communications, updating
data structures with temporary results and outputting final results to disk.

4.4.4 Memory limitations

For very large input graphs, memory usage becomes an issue. As stated previously,
an entire adjacency matrix for the graph cannot be allocated; the graph is instead
kept in memory as a list of edges, a much more memory-efficient representation.
Even with this efficient representation, temporary sub-matrices need to be kept in
memory: diagonal sub-matrices and boundary matrices. When recursively comput-
ing Step 3, boundary matrices are output to files so as to only keep a single boundary
matrix in memory.

Final results for diagonal sub-matrices are only obtained at the end of Step 3. As
soon as final values for these diagonal sub-matrices are obtained, they are output
to files; only relevant parts are kept in memory for Step 4; namely, parts of these
sub-matrices containing shortest distances from and to boundary vertices. Shortest
distances between non-boundary vertices are thus discarded from main memory at
the end of Step 3. The current limiting factor in terms of memory usage is the initial
boundary matrix. The first boundary matrix has to fit in the main CPU memory.
Section sec. 4.5 discusses ways to overcome this limitation. It is however probable
that prohibitive run-times or an amount of results too large to process may become
the limiting factor before main memory usage does.

4.5 Results and perspectives

In this section, we compare our implementation to two parallel Dĳkstra implemen-
tations. It is important to note that our implementation allows graphs with negative
edges - but no negative cycles - unlike Dĳkstra-based approaches.

In order to test our implementation, we generated random graphs with increasing
numbers of vertices, ranging from 1024 to 1024k. These graphs, generated using the
LEDA library [MNU99], were made planar to ensure good partitioning properties.

Computations were run on a cluster of more than 300 computer nodes; each node
is equipped with two NVIDIA C2090 GPUs, a 16 core Intel(R) Xeon(R) CPU E5-
2670 0 @ 2.60GHz and 32 GB of RAM.

Our implementation handles instances up to 512k vertices without using external
memory. For the very last instance, the use of external memory was required to fit
in the 32 GB of main memory. We later refer to our implementation without using
external memory as “Part. APSP no EM” and our implementation using external
memory as “Part. APSP EM”.

The GPU Dĳkstra implementation from [OATLGE13] is, to the best of our knowl-
edge, the only implementation that was reported to solve APSP for graphs with up

62

4.5 Results and perspectives

1000 10000 100000 1000000 10000000

0,0E+0

5,0E+3

1,0E+4

1,5E+4

2,0E+4

2,5E+4

3,0E+4

Run times with respect to # of vertices

GPU Dijkstra

Part. APSP EM

of vertices

R
u

n
 t
im

e
s

 (
in

 s
)

Figure 4.5.1: Evolution of run times with respect to the number of vertices. Two
implementations are compared: our implementation using external memory and
the GPU Dĳkstra implementation from [OATLGE13]. Computations were run
using two GPUs on a single cluster node.

to 1024k vertices; we later refer to this implementation as “GPU Dĳkstra”. This im-
plementation parallelizes SSSP computations on a single computer using two GPUs
and a multicore CPU. In order to compare this implementation to ours, we restricted
computations of both implementations to using only two GPUs. Both implementa-
tions could therefore run on a single cluster node; no communication between nodes
were therefore required. Figure Fig. 4.5.1 shows the runtimes for GPU Dĳkstra and
Part. APSP EM for graphs with numbers of vertices ranging from 1024 to 1024k
using only two GPUs. GPU Dikstra could not compute the last two instances - 512k
and 1024k vertices - within the 10 hour limit enforced on the cluster. We can see
that our implementation is significantly faster than GPU Dĳkstra.

Figure Fig. 4.5.2 shows the evolution of the speedup of our method without using
external memory with respect to the number of GPUs used for the computations.
Speedups are calculated using the run time obtained using only one GPU as a
reference. Computations were done for the 512k vertex instance using the Part.
APSP no I/O implementation. We can see that coarse-grain parallelism is close to
optimal up to around 31 GPUs; almost no benefit can however be gained from using
more than about 63 GPUs. The reason for this stagnation of the speedup above 63
GPUs is the saturation of communication with the master node.

The scalability can be improved using a coarse-grain parallelism approach that
would relieve the master node of some of its communication. A work-stealing ap-
proach, for instance, would reduce the amount of communication required for the
master node by decentralizing some of the memory transfers. A work-stealing ap-

63

Chapter 4 Efficient Multi-GPU Computation of All-Pairs Shortest Paths

1 10 100 1000

1

10

100

1000

Speedup w.r.t. # of GPUs

Ideal scaling

Speedup

of GPUs

S
p

e
e

d
u

p

Figure 4.5.2: Evolution of speedups with respect to the number of GPUs. The
ideal scaling line is given as a reference.

proach is however difficult to implement, due to the two-sided communication scheme
enforced by the MPI standard. [PCMM07] showed that such an efficient approach
was nevertheless feasible. This issue could also be addressed by creating a hierar-
chy of master nodes; some computations would be redundant between the different
master nodes - handling the main data structure - but this would only represent a
negligible fraction of the overall workload.

Figure Fig. 4.5.3 shows a comparison between our two implementations and a
distributed Dĳkstra approach - later referred to as CPU Dĳkstra - for graphs ranging
from 1024 to 1024k vertices. The distributed Dĳkstra approach was implemented
by dynamically distributing SSSP computations for each vertex of the graph over
every core of every available cluster node. The Dĳkstra-based implementation used
is that of the Boost C++ library [DAR09]. This experiment is not intended to
compare directly the performances of 2 GPUs versus a multicore CPU. Instead, we
intend to show that our approach is competitive with a distributed Dĳkstra approach
given a fixed number of heterogeneous cluster nodes. The run times presented in
Figure Fig. 4.5.3 were obtained using 64 cluster nodes. We can see that our version
using external memory obtains very similar run times to that of the distributed
Dĳkstra version, while allowing graphs with negative edges to be computed. Our
version without external memory is however significantly faster.

In order to test our implementation on a real dataset, we retrieved the Californian
road network dataset from [LLDM09]. This dataset consists in the entire road
network of the state of California; it contains 1, 957, 027 vertices corresponding to
road intersections and more than 5 million edges corresponding to roads. Computing
the 1012 shortest distances in this network took 31 minutes, using 64 cluster nodes.

64

4.5 Results and perspectives

1000 10000 100000 1000000 10000000

0

200

400

600

800

1000

1200

1400

1600

Run times w.r.t. # of vertices

Part. APSP EM

CPU Dijkstra

Part. APSP no EM

of vertices

R
u

n
 t
im

e
s

 (
in

 s
)

Figure 4.5.3: Evolution of run times with respect to the number of vertices. Three
implementations are compared: our two implementations - with and without using
external memory - and a distributed Dĳkstra implementation referred to as CPU
Dĳkstra. All computations were run on 64 cluster nodes.

65

Chapter 4 Efficient Multi-GPU Computation of All-Pairs Shortest Paths

66

5 Parallel seed-based approach to
protein structure similarity
detection

5.1 Introduction

A protein’s three dimensional structure tends to be better evolutionarily preserved
than its sequence. Therefore, finding structural similarities between two proteins
can give insights into whether these proteins share a common function or whether
they are evolutionarily related. Structural similarities between two proteins are
expressed by a one-to-one mapping (also called alignment) of their three dimensional
representations. The quality of these alignments is crucial to correctly estimate
protein functions and protein relations. Detecting the longest alignment, when
comparing protein structures, is frequently modeled as finding the maximum clique
[MDAY10, KJ10, SBS05], or enumerating all maximal cliques [GMB96, SKK+02].
Both problems are NP-hard. In these approaches, cliques are looked for in so-
called product (or alignment) graphs, where each edge corresponds to matching of
similar internal distances (up to a user-defined threshold τ). All edges in the target
cliques satisfy this condition, but exactly this requirement leads to solving NP-hard
problems.

Here, we relax this condition and accept cliques such that edges correspond to
matching of similar internal distances up to 2τ . For this relaxed problem we pro-
pose a polynomial algorithm and its efficient parallel implementation comparing
two protein structures that guarantees to return alignments with both RMSDc and
RMSDd less than a given threshold value, if such alignments exist. This method-
ology also offers the possibility to return more than one alignment for a single pair
of proteins to address cases where two proteins share more than a single similar
region. Our approach takes advantage of internal distance similarities among both
proteins to search for an optimal transformation to superimpose their structures.
To the best of our knowledge, our tool is unique in the capacity to generate multiple
alignments with “good” RMSDc and RMSDd values. Thanks to this property,
the tool is able to detect structural repetitions within a single protein and between
related proteins. We do not require vertices in the alignment graph to be ordered
which makes our algorithm suitable for detecting similar domains when comparing
multiple domained proteins. The computational burden is addressed by extensive
use of parallel computing techniques.

67

Chapter 5 Parallel seed-based approach to protein structure similarity detection

Atoms of
interest in
protein P

1

Atoms of interest in
protein P

2

1

2

3

4

1 2 3 4 5

1,1

2,1

4,1 4,3

3,33,2

1,2 1,4

2,4

3,4

4,4

2,5

Figure 5.1.1: Example of an alignment graph used here to compare the structures
of two proteins. The presence of an edge between vertex (1, 1) and vertex (3, 2)
means that the distance between atoms 1 and 2 of protein 1 is similar to the
distance between atoms 1 and 3 of protein 2. The clique (2, 1) (3, 2) (4, 3) indicates
that RMSD of structures (2, 3, 4) and (1, 2, 3) is less than 2τ .

5.1.1 Alignment graphs

Undirected graphs G = (V, E) are represented by a set V of vertices and a set E
of edges between these vertices. In this chapter, we focus on a subset consisting of
grid-like graphs, referred to as alignment graphs.

An m × n alignment graph G = (V, E) is a graph in which the vertex set V is
depicted by an m× n array T , where each cell T [i][k] contains at most one vertex
(i, k) from V . An example of such an alignment graph for protein comparison is
given in Fig. 5.1.1.

The matching of two proteins P1 and P2 can be solved by analyzing an alignment
graph G = (V, E), where V = {(v1, v2)|v1 ∈ V1, v2 ∈ V2} and V1 (resp. V2) is the
set of atoms of interest in protein P1 (resp. protein P2). A vertex (i, k) is present in
V only if atoms i ∈ V1 and k ∈ V2 are compatible. An example of incompatibility
could be different electrostatic properties of the two atoms. An edge ((i, k), (j, l))
is in E if and only if the distance between atoms i and j in protein P1, d(i, j), is
similar to the distance between atoms k and l in protein P2, d(k, l). In our case,
these distances are considered similar if |d(i, j) − d(k, l)| < τ , where τ is a given
threshold.

Vertices in an alignment graph are arbitrarily ordered and given a corresponding
index. In subsequent sections, the arbitrary notion of successors of a vertex v refers
to all the vertices that are adjacent to v in the alignment graph and have a higher
index than v. The notion of neighbors of a vertex v refers to all the vertices that
are adjacent to v in the alignment graph regardless of their respective indices. Let
G(V,E) be the input alignment graph, where V is the set of vertices and E the set
of edges. We define :

68

5.1 Introduction

successors(vi ∈ V) ={vj ∈ V |(vi, vj) ∈ E& i < j}
neighbors(vi ∈ V) ={vi} ∪ {vj ∈ V |(vi, vj) ∈ E}

5.1.2 Relation to protein structure comparison

In an alignment graph between two proteins P1 and P2, a subgraph with high density
of edges denotes similar regions in both proteins. Finding similarities between two
proteins can therefore be performed by searching the corresponding alignment graph
for subgraphs with high edge density. The highest possible edge density is found in
a clique, a subset of vertices that are all connected to each other.

DAST [MDAY10], for Distance-based Alignment Search Tool, aims at finding the
maximum clique in an alignment graph. DAST uses alignment graphs where rows
(resp. columns) represent an ordered set of atoms V1 (resp. V2) from protein P1

(resp. protein P2). A vertex (i, j) is present in the graph if and only if residues i
and j belong to similar secondary structures in both proteins. An edge is present
between vertex (i, j) and vertex (k, l) if and only if |d(i, j)− d(k, l)| < τ , where τ is
a given threshold. By construction, alignments returned by DAST are guaranteed
to have associated RMSDd strictly less than τ .

5.1.3 Measures for protein alignments

Many measures have been proposed to assess the quality of a protein alignment.
These measures include additive scores based on the distance between aligned residues
such as the TM-score [ZS04], the DALI score [WAK13], the PAUL score [WPDK09]
and the STRUCTAL score [SLL93] and Root Mean Square Deviation (RMSD) based
scores, such as RMSD100, SAS and GSAS [KKL05]. Given a set of n deviations

S = s1, s2, ..., sn, its Root Mean Square Deviation is: RMSD(S) =

√

√

√

√

1
n
∗
n
∑

i=1

s2i .

Two different RMSD measures are used for protein structure comparison: RMSDc,
which takes into account deviations consisting of the euclidean distances between
matched residues after optimal superposition of the two structures; RMSDd, which
takes into account deviations consisting of absolute differences of internal distances
within the matched structures. The measured deviations are |d(i, j)−d(k, l)|, for
all couples of matching pairs “i ↔ k, j ↔ l”. Let P be the latter set and Nm, its

cardinality. We have that RMSDd =
√

1
Nm
∗
∑

(ij,kl)∈P

(|d(i, j)−d(k, l)|2).

69

Chapter 5 Parallel seed-based approach to protein structure similarity detection

5.2 Methods

5.2.1 Our approach

Looking for the maximal clique in a graph is a NP-complete problem [Kar72]. Being
an exact solver, DAST faces prohibitively long run times for some instances. We
propose a polynomial approach to protein structure comparison that guarantees to
return alignments with the following properties RMSDd < 2τ and RMSDc < τ ,
if such exist. Our approach offers the possibility to return an arbitrary number
of distinct alignments. Returning multiple similar regions can prove useful, for
instance, when looking for a structural pattern that may be present more than once
in a protein or when comparing highly flexible proteins. However, enumerating
multiple similar regions requires a more systematic approach than those developed
in other existing heuristic-based tools. The computational burden associated with
such a systematic approach can nevertheless be addressed by making use of multiple
levels of parallelism.

Our method is inspired by the maximal clique search implemented in DAST.
Instead of testing for the presence of all edges among a subset of vertices as done in
DAST, we only test for the presence of edges between every vertex of the subset and
an initial 3-clique, referred to as seed. The correctness of the resulting algorithm
follows from geometric arguments, namely that the position of any 3-dimensional
solid object is determined by the positions of three of its points that are not collinear.

5.2.2 Overview of the algorithm

Algorithm 5.1 gives an overview of our approach. The algorithm consists of the
following three steps:

• Seeds in the alignment graph are enumerated. In our case, a seed is a set of
three points in the alignment graph that correspond to two triangles (one in
each protein) with similar internal distances. This step is detailed in sec. 5.2.3.

• Each seed is then extended. Extending a seed consists in adding all pairs of
atoms, for which distances to the seed are similar in both proteins, to the set
of three pairs of atoms that make up the seed. Seed extension is detailed in
sec. 5.2.4.

• Each seed extension is filtered - cf. lines 5 through 11 of Algorithm 5.1. Ex-
tension filtering is detailed in sec. 5.2.5 and consists in removing pairs of atoms
that do not match correctly.

Filtered extensions are then ranked according to their size - number of aligned
pairs of atoms - and a user-defined number of best matches are returned. This
process is explained in sec. 5.2.7. For very large alignment graphs, the graph can
be partitioned into a user-defined number of parts to speed up computations. The
graph is partitioned using a min-cut alike heuristic to preserve the quality of the

70

5.2 Methods

Algorithm 5.1 Overview of the algorithm

1 f unc t i on f ind_al ignments (graph)
INPUT: graph , an al ignment graph between atoms from two p r o t e i n s

3OUTPUT: r e s L i s t , a l i s t o f the l a r g e s t d i s t i n c t a l ignments found

5 Resu l tL i s t r e s L i s t = empty_resu l t_l i s t ()
SeedLi s t s eeds = enumerate_seeds (graph)

7 For each seed in seeds
VertexSet s e t = extend_seed (seed)

9 VertexSet r e s u l t = empty_set ()
For each ver tex in s e t

11 I f (i s_va l i d (ver tex))
r e s u l t . add (ver tex)

13 End I f
r e s L i s t . i n s e r t _ i f _ b e t t e r (r e s u l t)

15 End For
End For

results. Each subgraph is then processed independently. This process is explained
in Algorithm 5.5. The overall worst-case complexity of this algorithm without par-
titioning is O(|V | ∗ |E|3/2).

5.2.3 Seed enumeration

A seed consists of three pairs of atoms that form similar triangles in both proteins.
A triangle IJK in protein P1 is considered similar to a triangle I ′J ′K ′ in protein P2

if the following conditions are met: |d(I, J)−d(I ′, J ′)| < τ , |d(I,K)−d(I ′, K ′)| < τ
and |d(J,K)− d(J ′, K ′)| < τ . Here, d denotes the euclidean distance and τ is a
user-defined threshold parameter. The default value for τ is 2.0 Ångströms.

In the alignment graph terminology, these conditions for a seed (vi = (I, I ′), vj =
(J, J ′), vk = (K,K ′)) in graph G(V,E) translate to the following: (vi, vj) ∈ E,
(vi, vk) ∈ E and (vj, vk) ∈ E.

A seed thus corresponds to a 3-clique in the alignment graph; i.e., three vertices
that are connected to each other. Enumerating all the seeds is therefore equivalent
to enumerating every 3-clique in the input alignment graph.

Not all 3-cliques, however, are relevant. Suitable 3-cliques are composed of tri-
angles for which a unique transformation can be found to optimally superimpose
them. Namely, 3-cliques composed of triangles that appear to be too “flat” will not
yield a useful transformation. We thus ensure that the triangles in both proteins
defined by a potential seed are not composed of aligned points (or points which are
close to being aligned). The method is detailed in Algorithm 5.3. The worst-case
complexity of this step is O(|E|3/2) using, e.g., the algorithms from [SW05].

71

Chapter 5 Parallel seed-based approach to protein structure similarity detection

Algorithm 5.2 Seed enumeration

f unc t i on enumerate_seeds (graph)
2 INPUT: graph , an al ignment graph between atoms from two

p r o t e i n s
OUTPUT: seedL i s t , a l i s t o f s u i t a b l e 3− c l i q u e s (i . e . t r i p l e t s

o f v e r t i c e s that are connected to each other and correspond
to non−degenerated t r i a n g l e s in both p r o t e i n s)

4

SeedLi s t s e e d L i s t = empty_seed_list ()
6 For each vertex1 in graph

For each vertex2 in ge t_succe s so r s (ver tex1)
8 For each vertex3 in ge t_succe s so r s (ver tex2)

I f is_edge (vertex1 , ver tex3)
10 I f c o l l i n e a r i t y _ c h e c k (vertex1 , vertex2 , vertex3)

s e e d L i s t . add (vertex1 , vertex2 , ver tex3)
12 End I f

End I f
14 End For

End For
16 End For

5.2.4 Seed extension

Extending a seed consists in finding the set of vertices that correspond to pairs of
atoms that potentially match well (see sec. 5.2.5 for details) when the two triangles
defined by the seed are optimally superimposed. Finding a superset of pairs of
atoms that match well is performed by triangulation with the three pairs of atoms
composing the seed. Let (vi = (I, I ′), vj = (J, J ′), vk = (K,K ′)) be a seed of an
alignment graph G(V,E) as defined in sec. 5.2.3.

extension(vi, vj, vk) ={vl = (L,L′)|
|d(L, I)− d(L′, I ′)| < τ ∧
|d(L, J)− d(L′, J ′)| < τ ∧
|d(L,K)− d(L′, K ′)| < τ}

Where I (resp. I ′) is the atom of the first (resp. second) protein associated to
vertex vi. In the alignment graph terminology, the previous definition translates to:

extension(vi, vj, vk) = neighbors(vi) ∩ neighbors(vj) ∩ neighbors(vk)

The detail of seed extension is given in Algorithm 5.3. The computational complex-
ity associated to this step is O(|V |).

72

5.2 Methods

Algorithm 5.3 Seed extension

f unc t i on extend_seed (vertexA , vertexB , vertexC)
2 INPUT: a seed repre s en ted by three v e r t i c e s (or p a i r s o f atoms) from

the al ignment graph
OUTPUT: res , a s e t o f p a i r s o f atoms that p o t e n t i a l l y match we l l

when atoms from the seed are opt ima l ly superimposed ;
4 s i z e , the s i z e o f the returned s e t

6 BinaryVertexSet setA = get_neighbors (vertexA)
BinaryVertexSet setB = get_neighbors (vertexB)

8 BinaryVertexSet setC = get_neighbors (vertexC)
BinaryVertexSet tmp = i n t e r s e c t i o n (setA , setB)

10 BinaryVertexSet r e s = i n t e r s e c t i o n (tmp , vertexC)
i n t s i z e = pop_count (r e s)

v i=(I , I ')

v j=(J , J ')

vk=(K , K ')

plane definedby seed (v i , v j , vk)

L

L'

Figure 5.2.1: Example of symmetry issues. Even though, vertex vl = (L,L′)
belongs to the extension of seed(vi, vj, vk), points L and L′ lie on different sides
of the plane defined by optimally superimposed triangles IJK and I ′J ′K ′.

5.2.5 Extension filtering

The triangulation performed when extending a seed is not sufficient to find align-
ments with good RMSD measures. Indeed, in most cases, knowing the distance of
a point in a three dimensional space to three other non-aligned points yields two
possible locations. These locations are symmetrical with respect to the plane de-
fined by the three reference points. A vertex in a seed extension represents a pair
of atoms, one in each studied proteins. By construction, these atoms have similar
distances to the three points of their respective triangles. It may happen that one of
the two points, say L, is located, in protein P1, on one side of the plane defined by
its reference triangle, while the second point, says L′, in protein P2, lies on the other
side of the plane defined by the two optimally superimposed reference triangles - see
Fig. 5.2.1.

73

Chapter 5 Parallel seed-based approach to protein structure similarity detection

Algorithm 5.4 Extension filtering algorithm

1 f unc t i on f i l t e r _ e x t e n s i o n (extens i on)
INPUT: extens ion , a s e t o f p a i r s o f atoms

3OUTPUT: r e s u l t , a subset o f the ex tens i on conta in ing only p a i r s o f
atoms that match we l l

5 VertexSet r e s u l t = empty_set ()
Matrix t rans fo rmat ion = get_optimal_transformation (seed)

7 For each ver tex in extens i on
Point L = get_coord inate s_in_f i r s t_prote in (ver tex)

9 Point L_prime = get_coordinates_in_second_protein (ver tex)
Point L_transformed = apply_transformation (L , t rans fo rmat ion)

11 Float d i s t ance = d i s t (L_transformed , L_prime)
I f (d i s t anc e < thre sho ld)

13 r e s u l t . i n s e r t (ver tex)
End I f

15 End For

Using quadruplets of vertices as seeds does improve the quality of seed extensions
but greatly increases the computational cost of seed enumeration and degeneration
check on the corresponding tetrahedra. Moreover, larger seeds do not completely
ensure the quality of extensions. Namely, in cases where, for a vertex vl = (L,L′),
atom L (resp. L′) is very distant from atoms I, J and K (resp. atoms I ′, J ′ and K ′)
of a seed (vi = (I, I ′), vj = (J, J ′), vk = (K,K ′)), distance similarities to the atoms
of the seed do not ensure similar positions of atoms L and L′ in the two proteins.

In order to remove issues with symmetry (where the atoms in the extending
pair are roughly symmetrical with respect to the plane determined by the seed
atoms) and distance from the seed, we implemented a method to filter seed exten-
sions. This method consists in computing the optimal transformation T to superim-
pose the triangle from the seed corresponding to the first protein onto the triangle
corresponding to the second. The optimal transformation is obtained in constant
time with respect to the size of the alignment by using the fast, quaternion-based
method of [LAT10]. For each pair of atoms (L,L’) composing the extension of a
seed (vi = (I, I ′), vj = (J, J ′), vk = (K,K ′)), we compute the euclidean distance
between T (L) and L′. If the distance is greater than a given threshold τ , the pair
is removed from the extension. The filtering method is detailed in Algorithm 5.4.
The complexity of this step is O(|V |) per seed.

5.2.6 Guarantees on resulting alignments’ RMSD scores

By construction, the filtering method ensures that the RMSD for a resulting align-
ment is less than τ : the distance between two aligned residues after superimposition
of the two structures is guaranteed to be less than τ .

74

5.2 Methods

v i=(I , I ')

v j=(J , J ')

vk=(K , K ')

v l= L, L' vm=M ,M '

d L, L' d M ,M '

Figure 5.2.2: Illustration of the guarantee on the similarity of internal distances
between two pairs of atoms vl = (L,L′) and vm = (M,M ′), here represented in
yellow, added to a seed (vi, vj, vk) represented in blue. Dashed lines represent
internal distances, the similarity of which is tested in the alignment graph.

Internal distances between any additional pair of atoms and the seed is also guar-
anteed, by construction to be less than τ . Concerning internal distances between
two additional pairs of atoms, we ensure that in the worst possible case, the differ-
ence is 2 ∗ τ , see Fig. 5.2.2. The worst possible case happens when two additional
pairs of atoms vl = (L,L′) and vm = (M,M ′), added to the extension of a seed
(vi, vj, vk), have atoms L, L′, M and M ′ aligned, after superimposition, and atoms
from one protein lie within the segment defined by the two other atoms. In such a
case, the filtering step ensures that d(L,L′) < τ and d(M,M ′) < τ ; it follows that
|d(L,M)− d(L′,M ′)| < 2 ∗ τ .

5.2.7 Result ranking

When comparing two proteins, we face a double objective: finding alignments that
are both long and have low RMSD scores. The methodology described in sec. 5.2.5
ensures that any returned alignment will have a RMSDd lower or equal to twice
a user-defined parameter τ . We can therefore leave the responsibility to the user
to define a threshold for RMSD scores of interest. However, ranking alignments
that conform to this RMSD threshold simply based on their lengths is not an
acceptable solution. In a given alignment graph, several seeds may lead to very
similar transformations and thus very similar alignments. The purpose of returning
multiple alignments for a single comparison is to find distinct similar regions in
both proteins. Therefore, when two alignments are considered similar, we discard
the shorter of the two.

Two alignments are considered similar, when they share a defined number of pairs

75

Chapter 5 Parallel seed-based approach to protein structure similarity detection

of atoms. This number can be adjusted depending on the expected length of the
alignments or even set to a percentage of the smaller of the two compared alignments.
This methodology of ranking results ensures that no two returned alignments match
the same region in the first protein to the same region in the second protein.

5.2.8 k-to-k alignments

With this approach, results may not be alignments in the traditional sense, i.e. a 1-
to-1 mapping of amino-acids. It may happen that two residues from one protein are
matched with the same residue from the second protein. Such alignments, referred
to as k-to-k alignments, may be interesting when studying the possible docking of
two proteins; in such a case, a k-to-k alignment may be used to identify two regions
with a large number of contacts between two protein surfaces. Our efforts in this
direction were however unfruitful.

When 1-to-1 alignments are necessary, we propose two different approaches to
retrieve a 1-to-1 alignment from a k-to-k alignment. The first approach is indepen-
dent of the sequences of the two proteins, while the second approach offers sequence
dependent alignments for cases where following the original protein sequences is
required.

In order to retrieve a traditional alignment from a k-to-k alignment, we consider
the subgraph composed of all the vertices in the k-to-k alignment. In this subgraph,
which we assume to be complete, we remove edges between two vertices (M,M ′)
and (N,N ′) if M = N or M ′ = N ′. This subgraph is also an alignment graph with
columns that represent the atoms of the first protein that are present in the k-to-k
alignment and rows that represent the atoms of the second protein that are present
in the k-to-k alignment.

Finding the largest 1-to-1 alignment in a k-to-k alignment thus consists in find-
ing the largest set with at most one vertex per row and column in the subgraph
previously described. This largest set is found by solving an assignment problem.
Multiple 1-to-1 alignments of optimal length may however be present in the k-to-k
alignment graph. In order to retrieve the 1-to-1 alignment of optimal length and
optimal RMSDc, each tile of the k-to-k alignment graph is filled with the distance
between the two paired atoms after superimposition of the seed; solving the assign-
ment problem thus yields the longest 1-to-1 alignment that minimizes the sum of
the distances, hence minimizing the RMSDc - see Fig. 5.2.3.

Resulting 1-to1 alignments are independent of the original sequences of the two
proteins. If sequence dependence is required, a 1-to-1 alignment can also be retrieved
from the k-to-k alignment by looking for the longest increasing path in the previously
described subgraph. Resulting 1-to-1 alignments therefore follow the amino-acid
sequences of both proteins and do not take into account possible sequence inversions
between the two proteins.

76

5.2 Methods

Atoms of
protein P

1

present in
k-to-k

alignment

Atoms of protein P
2

present in k-to-k
alignment

1

2

3

4

1 2 3 4 5

0.5

1.6

2.3 1.2

1.61.4

2.4 2.5

1.5

1.8

2.5

1.3

Figure 5.2.3: Example of 1-to-1 alignments retrieved from a k-to-k alignments. In
red, a 1-to-1 alignment of optimal length but sub-optimal RMSDc and in green a
1-to-1 alignment of optimal length and optimal RMSDc. Solving the assignment
problem on this graph yields the green alignment.

5.2.9 Graph splitting

Large protein alignment graphs can contain millions of edges. In order to reduce the
computations induced by such large graphs, a graph splitting scheme is implemented.

Graph splitting is performed using a min-cut like heuristic, also known as multi-
level graph partitioning, provided by the METIS library [KK98a]. This heuristic
partitions the graph in k components of similar number of vertices and aims at min-
imizing the number of inter-component edges - edges between vertices that belong to
distinct components. In order to further minimize the number of inter-component
edges, we allow the sizes in terms of numbers of vertices of the components to vary
up to an order of magnitude. The assumption is that such partitions will keep each
area of interest in the graph within a single component.

Once a partition is obtained, subgraphs corresponding to the k components are
sorted according to their respective numbers of vertices. Each subgraph is then
solved starting with the largest subgraph. The list of best results is transmitted
from one subgraph to another, in order to be able to discard seeds whose extensions
are smaller than the best results found so far.

In practice, partitioning the graph tends to group vertices of each of the best
results within a single component. However, several of these vertices may be placed
in different components. To address this issue, seeds yielding to the best results in
a subgraph are extended and filtered once more using atoms from the initial global
graph.

This second extension and filtering phase significantly improves the length of re-
sulting alignments but does not guarantee to provide the same results as without
partitioning. However, experimental results show that a given graph could be par-

77

Chapter 5 Parallel seed-based approach to protein structure similarity detection

Algorithm 5.5 Graph splitting algorithm

1 func t i on spl i t_and_solve (globalGraph)
INPUT: globalGraph , an al ignment graph between atoms from two

p r o t e i n s
3OUTPUT: globalRes , a l i s t o f the l o n g e s t d i s t i n c t a l ignments found

in the graph

5 Resu l tL i s t g loba lRes = empty_resu l t_l i s t ()
Graph [] subGraphs = s p l i t (globalGraph)

7 s o r t (subgraphs)
For each subGraph in subGraphs

9 SeedLi s t best_seeds = empty_list ()
SeedLi s t s eeds = enumerate_seeds (subGraph)

11 For each seed in seeds
VertexSet current_res = extend_and_f i l ter (subGraph , seed)

13 best_seeds . i n s e r t _ i f _ b e t t e r (seed)
End For

15 For each seed in best_seeds
VertexSet current_res = extend_and_f i l ter (globalGraph , seed)

17 g loba lRes . i n s e r t _ i f _ b e t t e r (current_res)
End For

19 End For

titioned in up to 10 components with only a 2% loss in terms of alignment length
and a four fold overall speedup.

The graph splitting scheme is described in Algorithm 5.5.

5.3 Parallelism

5.3.1 Overview of the implemented parallelism

The overall complexity of our algorithm being O(|V |∗|E|3/2), handling large protein
comparison with a decent level of precision - i.e., using alignment graphs with a large
number of edges - can prove time-consuming. Our approach is however parallelizable
at multiple levels.

Fig. 5.3.1 shows an overview of our parallel implementation. Multiple seeds are
treated simultaneously to form a coarse-grain level of parallelism, while a finer grain
parallelism is used when extending a single seed.

5.3.2 Coarse-grain parallelism

Computations for enumerating seeds - see sec. 5.2.3, extending seeds - see sec. 5.2.4,
and filtering the resulting extensions - see sec. 5.2.5, are independent processes, which
can be performed in parallel. A user-defined number of threads can be spawned to

78

5.3 Parallelism

neighbors i
1
∩neighbors j

1
∩neighbors k

1
seed

1
i
1
, j
1
, k
1
: Filtering

neighbors i
2
∩neighbors j

2
∩neighbors k

2
seed

2
i
2
, j
2
, k
2
: Filtering

neighbors in∩neighbors jn∩neighborsknseed nin, jn , k n: Filtering

.

.

.

Coarse-grain
parallelism

Fine-grain parallelism

Enumeration Extension

Figure 5.3.1: Overview of the implemented parallelism.

handle, in parallel, computations for the various seeds present in the graph. This
parallelism is implemented using the openMP standard [DM98].

Threads, however need to share their results to populate a global list of results.
Inserting new entries in this global-result list would prove rather inefficient, because
thread safety would need to be ensured by using locks around accesses to this result
list. With such locks, threads would often stall whenever inserting a new alignment
and the time lost on these accesses would only increase with the number of threads
in use. In order to avoid any bottleneck when inserting a new alignment in the
result list, each thread has its own private list. These lists are merged at the end of
the computations to form a global result list. This method prevents the need for a
synchronization mechanism and allows threads to be completely independent.

However, using this method can, in some cases, increase the total amount of
computations. Whenever a seed extension is smaller than the smallest alignment
present in the result list, it is discarded, thus avoiding the cost of a filtering step.
Since each thread has its own result list, the minimal size required for the thread
to consider filtering an extension is only a lower bound of the global minimal size
found so far by all threads. Sharing only this global minimal size among threads is
not a suitable solution, because no guarantee could be made on the distinctness of
two alignments from different threads. Therefore, smaller similar regions would be
wrongly discarded.

Even if threads were to share a global minimal size, parallelism at this level could
still induce more computations. The order in which seeds are treated can, in some
cases, be important. When n results are required, if all n seeds yielding the n best
results are treated first, more seed extensions will be discarded and the total amount
of computations will be reduced. In this regard, our approach is similar to a branch
and bound algorithm. Parallelizing our approach at this level therefore induces the
same challenges that parallel branch and bound implementations face[LS84].

Though not implemented, an even higher level of parallelism could be consid-
ered when graph splitting is performed. Computations for each subgraph are also
independent and could therefore be run in parallel. Since a multicore parallelism im-
plementation is already provided, a cluster level parallelism could be implemented.
Each subgraph would be sent to a single cluster node using for example using an

79

Chapter 5 Parallel seed-based approach to protein structure similarity detection

1111001...0 0101001...1 0001100...1...

Word size

(i , j)∈E

∣V∣

(i ,k)∉E

j

k

neighboors (v i) :

Figure 5.3.2: Bit vector representation of the neighbors of vertex vi in an alignment
graph G(V,E). In this example, vj unlike vk is a neighbor of vi.

MPI approach(for Message Passing Interface [GLS99]). However, load balancing
would be a challenging task due to the limited number of subgraphs that can be
generated without a prohibitive loss of accuracy and the difference in terms of num-
bers of vertices of these subgraphs. Moreover, the total amount of computations
would increase if subgraphs were treated in parallel, since the optimal lower bound
found in one subgraph could not be used to solve other subgraphs. This issue would
also be similar to that observed in parallel branch and bound algorithms and first
described in [LS84].

5.3.3 Fine-grain parallelism

Seed extension makes extensive use of set intersection operations. In order to speed
up these particular operations, we implemented a bit vector representation of the
neighbors set of each vertex of the alignment graph. These bit vectors represent the
neighbors in the alignment graph of each vertex (cf. Fig. 5.3.2). For a vertex vi, a
bit is set at position j if and only if vertices vi and vj are connected in the alignment
graph.

This bit vector representation of the neighbors sets allows bit parallel computa-
tions of set intersection. A simple logic and operation over every word element of
the two sets yields the intersection.For faster traversal of the neighbors set a tradi-
tional list representation is also kept. This list representation allows easy access to
the first and last elements of the neighbors set. Knowing the first and last elements
of the sets allows us to restrict the area of interest for intersection operations (see
Fig. 5.3.3).

Intersection operations also benefit from SSE1 instructions. A number of atomic
operations equal to the size of the SSE registers available on the machine (typically
128 or 256) can be computed simultaneously. However, this sparse approach to
computing set intersections increases the number of atomic operations to perform.
Namely, vertices, which are not neighbors of any of the two vertices for which the

1Streaming SIMD Extensions

80

5.4 Results and perspectives

0001001...0 0101001...1 0001100...0...neighbors v i:

0000001...0 0011001...0 1101101...0...neighbors v j :

first (v i)

first (v j) last (v j)

last (v i)

Area of interest

&

0000001...0 0001001...0 0001100...0...neighbors v i∩neighbors v j:

Figure 5.3.3: Intersection of neighbors of vertex vi and vertex vj.

intersection is computed, will induce atomic operations; provided such vertices re-
side in the area of interest. Such vertices would not be considered in a traditional
approach to set intersection. This sparse approach is still faster in our case because
alignment graphs tend to be dense enough. The size of the resulting intersections is
required for the rest of our algorithm. Knowing the size of an intersection allows us
to discard seeds, when larger results have already been found. Computing the size
of a sparse set is not as trivial as it is with a dense set. In order to compute the size
of a sparse set, we use a built-in population count instruction (POPCNT) available
in SSE4. This operation returns, in constant time, the number of bits set in a single
machine word. For architectures without a built-in population count instruction, a
slower alternative is provided.

5.4 Results and perspectives

In order to test the capacity of our approach to detect multiple regions of interest,
we considered two proteins (PDB IDs 4clna and 2bbma). These proteins are each
composed of two similar domains - named A and B (resp. C and D) for the first
protein (resp. second protein), separated by a flexible bridge (see Fig. 5.4.1).

Existing approaches, such as PAUL [WPDK09] and ones based on contact map
overlap (CMO) [AMDY11], tend to match both proteins integrally, yielding larger
alignments but poorer RMSD scores. TM_align [ZS05], the reference tool for protein
comparison, only matches domain A onto domain C. The four top results of our tool
correspond to all four possible combinations of domain matching, cf. Fig. 5.4.2. Our
tool was run using 12 cores of an Intel(R) Xeon(R) CPU E5645 @ 2.40GHz and the
distance threshold was set to 7 Ångströms and to 2 Ångströms in the alignment
graph. Scores corresponding to these alignments are displayed in Table Tab. 5.1.

In this chapter, we introduce a novel approach to find similarities between protein

81

Chapter 5 Parallel seed-based approach to protein structure similarity detection

Figure 5.4.1: These two proteins are both composed of two similar domains -
named A and B for 4clna (left), and C and D for 2bbma (right). These domains
are separated by a a flexible bridge.

Figure 5.4.2: Visualizations of the results for the comparison of proteins 4clna and
2bbma returned by CMO, PAUL and the four top alignments of our approach.

82

5.4 Results and perspectives

CMO PAUL TMAlign AC BD AD BC

of aligned residues 148 148 79 72 70 66 64
% of aligned residues 100 100 53.4 48.7 47.3 44.6 43.2

RMSDc 14.781 14.781 2.935 2.048 1.731 1.592 2.210
RMSDd 10.838 10.838 2.627 1.797 1.475 1.414 1.770

TM_score 0.161 0.161 0.422 0.411 0.422 0.405 0.358

Table 5.1: Details of the alignments returned by other tools - columns 2 through
4 - and our method - columns 5 through 8. Best scores are in italics.

of cores 1 2 3 4 6 8 12 16 20 24
Run time (s) 6479 3696 2494 1932 1374 1072 781 723 676 643

Speedup 1 1.8 2.6 3.4 4.7 6.0 8.3 9.0 9.6 10.1

Table 5.2: Run times and speedups for varying # of cores.

structures. Resulting alignments are guaranteed to score well for both RMSDd and
RMSDc, while remaining polynomial. This approach takes advantage of internal
distance similarities, described in an alignment graph, to narrow down the search
for an optimal transformation to superimpose two substructures of the proteins.

In order to test our coarse-grain parallel implementation, we compare run times
obtained with various numbers of threads on a single artificially large instance.
Any instance can be made artificially large by allowing a large number of vertices
and edges when creating the alignment graph. The input alignment graph for this
instance contains 15024 vertices for 9565358 edges. Computations were run using a
varying number of cores of an Intel(R) Xeon(R) CPU E5645 @ 2.40GHz. Tab. 5.2
shows run times and speedups with respect to the number of CPU cores. The gain
in terms of speedup becomes less significant beyond 12 cores. Note that similar
results - both in terms of length and RMSD scores - can be obtained in less than
30 seconds with a sparser alignment graph.

Fig. 5.4.3 shows run times for graphs with a varying number of edges and the same
number of vertices - 21904. Computations were run using 12 cores of an Intel(R)
Xeon(R) CPU E5645 @ 2.40GHz. Input alignment graphs were all generated from
the same two proteins and different parameters to allow a varying number of edges.

This approach could be used to find similarities between RNA structures. How-
ever, such structures can be much larger than proteins. Therefore, future work
includes further optimizations to allow larger alignment graphs to be computed.

83

Chapter 5 Parallel seed-based approach to protein structure similarity detection

0 5000000 10000000 15000000 20000000

0

100

200

300

400

500

600

700

800

Evolution of run time w.r.t. # of edges

of edges

R
u

n
 t
im

e
 (

s
)

Figure 5.4.3: Evolution of run times with respect to # of edges in the alignment
graph.

84

6 Conclusions and perspectives

In many domains, the increasing amount of data to process along with an archi-
tectural shift from increasing processor clock frequencies to increasing parallel ca-
pabilities in modern computers stress the need for parallel algorithms and efficient
implementations. Our work focused on designing parallel algorithms for relevant
bioinformatics problems and implementing them for suitable parallel architectures.

6.1 Conclusions

This thesis described contributions to three different domains: genetics, with a GPU
implementation of a tool for QTL Mapping; large graph analysis, with a multi-GPU
implementation for a new algorithm for the ALL-Pairs Shortest Path problem; and
protein structure comparison, with a new algorithm for protein similarity detection
and its multicore implementation.

We described the background of this present work in chapter 2. We focused on
detailing the parallel capabilities offered by modern computers and the program-
ming methods to exploit these parallel capabilities. We also described recent paral-
lelization efforts conducted in two areas in bioinformatics: sequence and structure
comparison. These two particular areas have seen many recent publications for
parallel implementations using a wide range of parallelization techniques and are
representative of the global trend in bioinformatics.

In chapter 3, we presented a new version of existing software QTLMap. QTLMap
is a tool for QTL detection, a computationally heavy procedure. This new ver-
sion takes advantage of GPUs to speed up computations. Computations using this
new version are between 50 and 75 times faster than computations using the pre-
vious multicore implementation, while maintaining the same results and precision.
Reduced runtimes allow geneticists to consider more precise and time consuming
analyses by increasing the number of simulations or the number of studied genome
positions. Reduced runtimes also allow geneticists to consider new analyses, such as
multiQTL analyses.

In chapter 4, we described a new algorithm for solving the all-pairs shortest-path
(APSP) problem for planar graphs and graphs with small separators that exploits the
massive on-chip parallelism available in today’s Graphics Processing Units (GPUs).
Our algorithm, based on the Floyd-Warshall algorithm, has near optimal complexity
in terms of the total number of operations, while its matrix-based structure is regular
enough to allow for efficient parallel implementation on the GPUs. By applying a
divide-and-conquer approach, we are able to make use of multi-node GPU clusters,

85

Chapter 6 Conclusions and perspectives

resulting in more than an order of magnitude speedup over fastest known Dĳkstra-
based GPU implementation and a two-fold speedup over a parallel Dĳkstra-based
CPU implementation. The applications of this new algorithm lie beyond the scope
of bioinformatics.

In chapter 5, we presented a novel approach to protein structure comparison. A
traditional approach to finding structural similarities between proteins is to search
for the maximum clique in an alignment graph. However, searching for the maximum
clique in a graph is an NP -complete problem and can therefore lead to unreasonable
runtimes. Our approach relaxes some of the constraints imposed when looking for
the maximum clique and returns regions of high density in the alignment graph. The
relaxation of the constraints allows our approach to have a polynomial complexity,
while maintaining guarantees on the quality of resulting alignments. The computa-
tional burden of our approach is addressed by extensive use of parallel computing
techniques.

6.2 Perspectives

6.2.1 QTL detection

QTL detection is a time consuming procedure. The accuracy of an analysis is
determined by the precision of the discretization of the studied chromosomal region
and the number of simulations to test the results under the null hypothesis. With
reduced runtimes, geneticists can now consider analyses with smaller discretization
steps and more simulations.

Future QTL detection analyses will however require to consider the entire DNA
sequence of the studied individuals in order to be more precise. Such analyses, also
referred to as genome-wide association studies, require many more computations
than traditional QTL detection, where entire DNA sequences of studied individuals
are discretized. In order to cope with the computational burden of genome-wide
studies, QTLMap could be adapted to take advantage of more than one GPU on a
single computer or even adapted to run on large GPU clusters.

6.2.2 Large graph analysis

Our method allowed the resolution of the All-Pairs Shortest Path problem on graphs
with up to several million vertices in reasonable times using up to hundreds of
GPUs simultaneously. Increasing the size of target graphs will require efforts in two
directions.

On the one hand, the representation of the data will need to be improved in order
to reduce the memory footprint of the program. The current limiting factor is the
size of the initial boundary matrix, which is currently represented in memory by a
large distance matrix. Switching to a denser representation of this initial boundary

86

6.2 Perspectives

matrix will drastically reduce its size in memory and allow larger graphs to be
computed.

On the other hand, efforts will need to improve the coarse-grain parallelism of
our approach. Larger graph will drastically increase the demand for computations.
This increasing demand for computations can be addressed by increasing the number
of GPUs in order to guarantee reasonable runtimes. Our current implementation
however does not benefit from using more than around 100 GPUs. This is due
to the fact that the master node, which coordinates all computations, becomes
overwhelmed with communications with slave nodes. In order to improve the scaling
of our implementation, we could implement a work-stealing approach, which should
relieve the master node of some of the communications or increase the number of
master nodes.

6.2.3 Protein structure comparison

In the future, methods that have been successfully applied to finding local similarities
between proteins will need to be adapted to look for similarities between RNA
sequence. RNA sequences can be much larger than protein sequences. Though a
heuristic, our approach to protein structure comparison is computationally intensive.
In order to cope with the computational burden of finding similarities between large
RNA strands, our approach will need to be improved.

Parts of our approach could benefit from using available GPUs for computations.
Extending a set of seeds, as defined in our algorithm, is especially suited for com-
putations on a GPU. Seed extension consists in computing the intersection of three
binary sets. This process does not present any branching nor irregular data access
patterns; implementing it on a GPU is rather straight-forward as all the required
instructions are available on a GPU. A potential improvement of our implementa-
tion would be to use one CPU thread to enumerate a set of seeds. Once a suitable
number of seeds have been identified, these seeds can be sent to a GPU for exten-
sion. Remaining CPU threads could then filter the seed extensions computed on the
GPU.

6.2.4 General remarks

The recent data tsunami in bioinformatics yields many challenges in terms of stor-
age and transfer of information, computing of analyses... This worked showed that
parallelism can be used to alleviate the computational burden that represents this
increasing mass of data. We also showed that parallelism allows more precise anal-
yses to be run when the mass of data is not an issue. However, parallelizing an
existing approach can be a tedious task. Therefore, developing new approaches
with parallelism in mind from the beginning is crucial with the recent ubiquity of
parallel architectures.

87

Chapter 6 Conclusions and perspectives

6.3 Acknowledgments

This work was supported by the region of Brittany, France.

88

Bibliography

[AD86] Lloyd Allison and Trevor I Dix. A bit-string longest-common-
subsequence algorithm. Information Processing Letters, 23(5):305–
310, 1986.

[AGM+90] Stephen F Altschul, Warren Gish, Webb Miller, Eugene W Myers,
and David J Lipman. Basic local alignment search tool. Journal of
molecular biology, 215(3):403–410, 1990.

[AMDY11] Rumen Andonov, Noël Malod-Dognin, and Nicola Yanev. Maximum
contact map overlap revisited. Journal of Computational Biology,
18(1):27–41, 2011.

[BGB10] Aydın Buluç, John R. Gilbert, and Ceren Budak. Solving path prob-
lems on the GPU. Parallel Computing, 36(5):241–253, 2010.

[CD94] G.A. Churchill and R.W. Doerge. Empirical threshold values for quan-
titative trait mapping. Genetics, 138(3):963, 1994.

[CFE+13] Guillaume Chapuis, Olivier Filangi, Jean-Michel Elsen, Dominique
Lavenier, and Pascale Le Roy. Graphics Processing Unit-accelerated
Quantitative Trait Loci detection. Journal of Computational Biology,
20(9):672–686, 2013.

[CIPR01] Maxime Crochemore, Costas S. Iliopoulos, Yoan J. Pinzon, and
James F. Reid. A fast and practical bit-vector algorithm for the
longest common subsequence problem. Information Processing Let-
ters, 80(6):279–285, 2001.

[CSRL01] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E.
Leiserson. Introduction to Algorithms. McGraw-Hill Higher Educa-
tion, 2nd edition, 2001.

[DAR09] Beman Dawes, David Abrahams, and Rene Rivera. Boost C++ li-
braries. URL http://www. boost. org, 35:36, 2009.

[Deo10] Sebastian Deorowicz. Bit-parallel algorithm for the constrained
longest common subsequence problem. Fundamenta Informaticae,
99(4):409–433, 2010.

89

Bibliography

[Dĳ59] Edsger W Dĳkstra. A note on two problems in connexion with graphs.
Numerische mathematik, 1(1):269–271, 1959.

[DM98] Leonardo Dagum and Ramesh Menon. OpenMP: an industry stan-
dard API for shared-memory programming. Computational Science
& Engineering, IEEE, 5(1):46–55, 1998.

[Edg04] Robert C Edgar. MUSCLE: a multiple sequence alignment method
with reduced time and space complexity. BMC bioinformatics,
5(1):113, 2004.

[EMG+99] Jean-Michel Elsen, Brigitte Mangin, Bruno Goffinet, Didier Boichard,
and Pascale Le Roy. Alternative models for QTL detection in live-
stock. i. general introduction. Genet. Sel. Evol., 31:1–12, 1999.
10.1186/1297-9686-31-3-213.

[Far07] Michael Farrar. Striped smith–waterman speeds database searches six
times over other SIMD implementations. Bioinformatics, 23(2):156–
161, 2007.

[FCA+00] F. Farnir, W. Coppieters, J. J. Arranz, P. Berzi, N. Cambisano,
B. Grisart, L. Karim, F. Marcq, L. Moreau, M. Mni, C. Nezer, P. Si-
mon, P. Vanmanshoven, D. Wagenaar, and M. Georges. Extensive
genome-wide linkage disequilibrium in cattle. Genome Res., 10:220–
227, Feb 2000.

[FEDGL10] A. Favier, J.M. Elsen, S. De Givry, and A. Legarra. Optimal hap-
lotype reconstruction in half-sib families. In ICLP-10 workshop on
Constraint Based Methods for Bioinformatics, Edinburgh, UK, 2010.

[FMG+10] O. Filangi, C. Moreno, H. Gilbert, A. Legarra, P. Le Roy, and
JM Elsen. QTLMap, a software for QTL detection in outbred popu-
lations. In Proceedings of the 9th World Congress on Genetics Applied
to Livestock Production: 1-6 August; Leipzig, number 787, 2010.

[Fre87] Greg N. Frederickson. Fast algorithms for shortest paths in planar
graphs, with applications. SIAM J. Comput., 16(6):1004–1022, 1987.

[FVS11] Jianbin Fang, Ana Lucia Varbanescu, and Henk Sips. A compre-
hensive performance comparison of CUDA and OpenCL. In Parallel
Processing (ICPP), 2011 International Conference on, pages 216–225.
IEEE, 2011.

[GD99] B. Goffinet and R. Didier. Alternative models for qtl detection in live-
stock.iii. heteroskedastic model and models corresponding to several
distributions of the qtl effect. Genet. Sel. Evol., 31:341–350, 1999.

90

Bibliography

[GLRM+08] H. Gilbert, P. Le Roy, C. Moreno, D. Robelin, and J.M. Elsen.
QTLMap, a software for QTL detection in outbred populations. In
Annals of Human Genetics, volume 72, pages 694–694. WILEY-
BLACKWELL COMMERCE PLACE, 350 MAIN ST, MALDEN
02148, MA USA, 2008.

[GLS99] William Gropp, Ewing L Lusk, and Anthony Skjellum. Using MPI-:
Portable Parallel Programming with the Message Passing Interface,
volume 1. MIT press, 1999.

[GMB96] Jean-Francois Gibrat, Thomas Madej, and Stephen H Bryant. Sur-
prising similarities in structure comparison. Current opinion in struc-
tural biology, 6(3):377–385, 1996.

[GZL+11] Andre Vincent Pascal Grosset, Peihong Zhu, Shusen Liu, Suresh
Venkatasubramanian, and Mary Hall. Evaluating graph coloring on
GPUs. SIGPLAN Notices, 46(8):297, 2011.

[HCF+08] Doug Howe, Maria Costanzo, Petra Fey, Takashi Gojobori, Linda
Hannick, Winston Hide, David P Hill, Renate Kania, Mary Schaeffer,
Susan St Pierre, et al. Big data: The future of biocuration. Nature,
455(7209):47–50, 2008.

[HN07] Pawan Harish and PJ Narayanan. Accelerating large graph algorithms
on the GPU using CUDA. In High performance computing–HiPC
2007, pages 197–208. Springer, 2007.

[HPS+10] J.R. Humphrey, D.K. Price, K.E. Spagnoli, A.L. Paolini, and E.J.
Kelmelis. CULA: hybrid GPU accelerated linear algebra routines. In
Society of Photo-Optical Instrumentation Engineers (SPIE) Confer-
ence Series, volume 7705, page 1, 2010.

[HR68] W. G. Hill and Alan Robertson. Linkage disequilibrium in finite pop-
ulations. TAG Theoretical and Applied Genetics, 38:226–231, 1968.
10.1007/BF01245622.

[HTWH11] G. Hemani, A. Theocharidis, W. Wei, and C. Haley. EpiGPU: Ex-
haustive pairwise epistasis scans parallelised on consumer level graph-
ics cards. Bioinformatics, 27:1462–1465, April 2011.

[Hyy04] Heikki Hyyrö. Bit-parallel LCS-length computation revisited. In Proc.
15th Australasian Workshop on Combinatorial Algorithms (AWOCA
2004), pages 16–27, 2004.

[IDN11] Katsumi Inoue, Andrei Doncescu, and Hidetomo Nabeshima. Hy-
pothesizing about causal networks with positive and negative effects
by meta-level abduction. In Inductive Logic Programming, pages 114–
129. Springer, 2011.

91

Bibliography

[Kar72] Richard M Karp. Reducibility among combinatorial problems.
Springer, 1972.

[KC89] Shufen Kuo and George R. Cross. An improved algorithm to find the
length of the longest common subsequence of two strings. In ACM
SIGIR Forum, volume 23, pages 89–99. ACM, 1989.

[KDH10] Kamran Karimi, Neil G. Dickson, and Firas Hamze. A performance
comparison of CUDA and OpenCL. arXiv preprint arXiv:1005.2581,
2010.

[KEH96] S. Knott, J. Elsen, and C. Haley. Methods for multiple-marker map-
ping of quantitative trait loci in half-sib populations. TAG Theoretical
and Applied Genetics, 93:71–80, 1996. 10.1007/BF00225729.

[KJ10] Janez Konc and Dušanka Janežič. ProBiS algorithm for detection
of structurally similar protein binding sites by local structural align-
ment. Bioinformatics, 26(9):1160–1168, 2010.

[KK98a] George Karypis and Vipin Kumar. A fast and high quality multilevel
scheme for partitioning irregular graphs. SIAM Journal on scientific
Computing, 20(1):359–392, 1998.

[KK98b] George Karypis and Vipin Kumar. Multilevel k-way partitioning
scheme for irregular graphs. Journal of Parallel and Distributed com-
puting, 48(1):96–129, 1998.

[KK08] Gary J. Katz and Joseph T. Kider, Jr. All-pairs shortest-paths for
large graphs on the GPU. In Proceedings of the 23rd ACM SIG-
GRAPH/EUROGRAPHICS symposium on Graphics hardware, GH
’08, pages 47–55, Aire-la-Ville, Switzerland, Switzerland, 2008. Euro-
graphics Association.

[KKL05] Rachel Kolodny, Patrice Koehl, and Michael Levitt. Comprehensive
evaluation of protein structure alignment methods: scoring by ge-
ometric measures. Journal of molecular biology, 346(4):1173–1188,
2005.

[KKN12] Kouichi Kimura, Asako Koike, and Kenta Nakai. A bit-parallel dy-
namic programming algorithm suitable for DNA sequence alignment.
Journal of Bioinformatics and Computational Biology, 10(04), 2012.

[KT10] Kazutaka Katoh and Hiroyuki Toh. Parallelization of the MAFFT
multiple sequence alignment program. Bioinformatics, 26(15):1899–
1900, 2010.

[L+09] Dominique Lavenier et al. PLAST: parallel local alignment search
tool for database comparison. BMC bioinformatics, 10(1):329, 2009.

92

Bibliography

[LAT10] Pu Liu, Dimitris K Agrafiotis, and Douglas L Theobald. Fast de-
termination of the optimal rotational matrix for macromolecular su-
perpositions. Journal of computational chemistry, 31(7):1561–1563,
2010.

[Lew64] R. C. Lewontin. The interaction of selection and linkage. II. Optimum
models. Genetics, 50:757–782, Oct 1964.

[LF09] A. Legarra and R. L. Fernando. Linear models for joint association
and linkage QTL mapping. Genet. Sel. Evol., 41:43, 2009.

[LHJV06] Yang Liu, Wayne Huang, John Johnson, and Sheila Vaidya. GPU
accelerated smith-waterman. In Computational Science–ICCS 2006,
pages 188–195. Springer, 2006.

[LHK10] Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. Predicting
positive and negative links in online social networks. In Proceedings of
the 19th international conference on World wide web, pages 641–650.
ACM, 2010.

[LLDM09] Jure Leskovec, Kevin J Lang, Anirban Dasgupta, and Michael W Ma-
honey. Community structure in large networks: Natural cluster sizes
and the absence of large well-defined clusters. Internet Mathematics,
6(1):29–123, 2009.

[LR09] Lukasz Ligowski and Witold Rudnicki. An efficient implementation
of smith waterman algorithm on GPU using CUDA, for massively
parallel scanning of sequence databases. In Parallel & Distributed
Processing, 2009. IPDPS 2009. IEEE International Symposium on,
pages 1–8. IEEE, 2009.

[LREB+98] P. Le Roy, JM Elsen, D. Boichard, B. Mangin, JP Bidanel, and
B. Goffinet. An algorithm for QTL detection in mixture of full and
half-sib families. In Proceedings of the 6th World Congress on Genet-
ics Applied to Livestock Production, volume 26, pages 257–260, 1998.

[LS84] Ten-Hwang Lai and Sartaj Sahni. Anomalies in parallel branch-and-
bound algorithms. Communications of the ACM, 27(6):594–602, 1984.

[LSM09] Yongchao Liu, Bertil Schmidt, and Douglas L Maskell. MSA-CUDA:
multiple sequence alignment on graphics processing units with CUDA.
In Application-specific Systems, Architectures and Processors, 2009.
ASAP 2009. 20th IEEE International Conference on, pages 121–128.
IEEE, 2009.

93

Bibliography

[LSM10a] Yongchao Liu, Bertil Schmidt, and Douglas L Maskell. CUDASW++
2.0: enhanced smith-waterman protein database search on CUDA-
enabled GPUs based on SIMT and virtualized SIMD abstractions.
BMC research notes, 3(1):93, 2010.

[LSM10b] Yongchao Liu, Bertil Schmidt, and Douglas L Maskell. MSAProbs:
multiple sequence alignment based on pair hidden markov mod-
els and partition function posterior probabilities. Bioinformatics,
26(16):1958–1964, 2010.

[LSVMW06] Weiguo Liu, Bertil Schmidt, Gerrit Voss, and Wolfgang Müller-
Wittig. GPU-ClustalW: Using graphics hardware to accelerate multi-
ple sequence alignment. In High Performance Computing-HiPC 2006,
pages 363–374. Springer, 2006.

[Lyn08] Clifford Lynch. Big data: How do your data grow? Nature,
455(7209):28–29, 2008.

[M+65] Gordon E Moore et al. Cramming more components onto integrated
circuits, 1965.

[MBBC07] Kamesh Madduri, David A. Bader, Jonathan W. Berry, and Joseph R.
Crobak. An experimental study of a parallel shortest path algorithm
for solving large-scale graph instances. In ALENEX. SIAM, 2007.

[MDAY10] Noël Malod-Dognin, Rumen Andonov, and Nicola Yanev. Maximum
cliques in protein structure comparison. In Experimental Algorithms,
pages 106–117. Springer, 2010.

[MNS12] Kazuya Matsumoto, Naohito Nakasato, and Stanislav G. Sedukhin.
Blocked united algorithm for the all-pairs shortest paths problem on
hybrid CPU-GPU systems. IEICE TRANSACTIONS on Information
and Systems, 95(12):2759–2768, 2012.

[MNU99] Kurt Mehlhorn, Stefan Näher, and Christian Uhrig. Leda: A platform
for combinatorial and geometric computing. 38, 1999.

[Moo] Gordon E Moore. Excerpts from a conversation with gordon moore:
Moore’s law, 2005.

[MS03] Ulrich Meyer and Peter Sanders. [delta]-stepping: a parallelizable
shortest path algorithm. J. Algorithms, 49(1):114–152, 2003.

[MV08] Svetlin A. Manavski and Giorgio Valle. CUDA compatible GPU cards
as efficient hardware accelerators for smith-waterman sequence align-
ment. BMC bioinformatics, 9(Suppl 2):S10, 2008.

94

Bibliography

[Mye99] Gene Myers. A fast bit-vector algorithm for approximate string
matching based on dynamic programming. Journal of the ACM
(JACM), 46(3):395–415, 1999.

[NVI12] NVIDIA. NVIDIA CUDA Programming Guide 4.2. 2012.

[OATLGE13] Hector Ortega-Arranz, Yuri Torres, Diego R. Llanos, and Arturo
Gonzalez-Escribano. A tuned, concurrent-kernel approach to speed
up the APSP problem. 2013.

[OIH12] Tomohiro Okuyama, Fumihiko Ino, and Kenichi Hagihara. A task
parallel algorithm for finding all–pairs shortest paths using the GPU.
International Journal of High Performance Computing and Network-
ing, 7(2):87–98, 2012.

[PCMM07] Guilherme P Pezzi, Márcia C Cera, Elton Mathias, and Nicolas Mail-
lard. On-line scheduling of MPI-2 programs with hierarchical work
stealing. In Computer Architecture and High Performance Comput-
ing, 2007. SBAC-PAD 2007. 19th International Symposium on, pages
247–254. IEEE, 2007.

[RAED10] C.E. Rabier, J.M. Azais, J.M. Elsen, and C. Delmas. Threshold and
power for Quantitative Trait Locus detection. hal:http://hal.archives-
ouvertes.fr/hal-00482142/en/, 2010.

[RS00] Torbjørn Rognes and Erling Seeberg. Six-fold speed-up of smith–
waterman sequence database searches using parallel processing on
common microprocessors. Bioinformatics, 16(8):699–706, 2000.

[SBS05] D.M. Strickland, E. Barnes, and J.S. Sokol. Optimal protein structure
alignment using maximum cliques. Oper. Res., 53(3):389–402, 2005.

[SHG+06] G. Seaton, J. Hernandez, J.A. Grunchec, I. White, J. Allen,
DJ De Koning, W. Wei, D. Berry, C. Haley, and S. Knott. GridQTL:
a grid portal for QTL mapping of compute intensive datasets. In Pro-
ceedings of the 8th World Congress on Genetics Applied to Livestock
Production, pages 13–18, 2006.

[SHK+02] George Seaton, Chris S. Haley, Sara A. Knott, Mike Kearsey, and
Peter M. Visscher. QTL Express: mapping quantitative trait loci
in simple and complex pedigrees. Bioinformatics applications note,
18(2):339–340, 2002.

[SKK+02] Stefan Schmitt, Daniel Kuhn, Gerhard Klebe, et al. A new method to
detect related function among proteins independent of sequence and
fold homology. Journal of molecular biology, 323(2):387–406, 2002.

95

Bibliography

[SLL93] S. Subbiah, D.V. Laurents, and M. Levitt. Structural similarity of
dna-binding domains of bacteriophage repressors and the globin core.
Current Biology, 3(3):141–148, 1993.

[SNC77] Frederick Sanger, Steven Nicklen, and Alan R. Coulson. DNA se-
quencing with chain-terminating inhibitors. Proceedings of the Na-
tional Academy of Sciences, 74(12):5463–5467, 1977.

[SOW+95] Marc Snir, Steve W. Otto, David W. Walker, Jack Dongarra, and
Steven Huss-Lederman. MPI: the complete reference. MIT press,
1995.

[SSMRLH13] Pablo San Segundo, Fernando Matia, Diego Rodríguez-Losada, and
Miguel Hernando. An improved bit parallel exact maximum clique
algorithm. Optimization Letters, pages 1–13, 2013.

[SSRLJ11] Pablo San Segundo, Diego Rodríguez-Losada, and Agustín Jiménez.
An exact bit-parallel algorithm for the maximum clique problem.
Computers & Operations Research, 38(2):571–581, 2011.

[SW05] Thomas Schank and Dorothea Wagner. Finding, counting and listing
all triangles in large graphs, an experimental study. In Experimental
and Efficient Algorithms, pages 606–609. Springer, 2005.

[TB09] VA Traag and Jeroen Bruggeman. Community detection in networks
with positive and negative links. Physical Review E, 80(3):036115,
2009.

[TDVD09] S. Tomov, J. Dongarra, V. Volkov, and J. Demmel. Magma library,
version 0.1, 2009.

[THG94] Julie D. Thompson, Desmond G. Higgins, and Toby J. Gibson.
ClustalW: improving the sensitivity of progressive multiple sequence
alignment through sequence weighting, position-specific gap penalties
and weight matrix choice. Nucleic acids research, 22(22):4673–4680,
1994.

[TKM07] LR Thimm, DL Kreher, and P Merkey. A parallel implementation for
the maximum clique problem. Journal of Combinatorial Mathematics
and Combinatorial Computing, 63:183, 2007.

[TLC+03] Chuan Yi Tang, Chin Lung Lu, Margaret Dah-Tsyr Chang, Yin-Te
Tsai, Yuh-Ju Sun, Kun-Mao Chao, Jia-Ming Chang, Yu-Han Chiou,
Chia-Mao Wu, Hao-Teng Chang, et al. Constrained multiple se-
quence alignment tool development and its application to rnase fam-
ily alignment. Journal of Bioinformatics and Computational Biology,
1(02):267–287, 2003.

96

Bibliography

[Tsa03] Yin-Te Tsai. The constrained longest common subsequence problem.
Information Processing Letters, 88(4):173–176, 2003.

[TSH+10] Etsuji Tomita, Yoichi Sutani, Takanori Higashi, Shinya Takahashi,
and Mitsuo Wakatsuki. A simple and faster branch-and-bound algo-
rithm for finding a maximum clique. In WALCOM: Algorithms and
computation, pages 191–203. Springer, 2010.

[UI93] Naoto Ukiyama and Hiroshi Imai. Parallel multiple alignments and
their implementation on CM5. Genome Informatics, 4:103–108, 1993.

[VD08] Vasily Volkov and James W. Demmel. Benchmarking GPUs to tune
dense linear algebra. In SC ’08: Proceedings of the 2008 ACM/IEEE
conference on Supercomputing, pages 1–11, Piscataway, NJ, USA,
2008. IEEE Press.

[Vol10] Vasily Volkov. Better performance at lower occupancy. In Proceedings
of the GPU Technology Conference, GTC, volume 10, 2010.

[VS11] Panagiotis D Vouzis and Nikolaos V Sahinidis. GPU-BLAST: using
graphics processors to accelerate protein sequence alignment. Bioin-
formatics, 27(2):182–188, 2011.

[W+08] Mitch Waldrop et al. Big data: wikiomics. Nature, 455(7209):22,
2008.

[WAK13] Inken Wohlers, Rumen Andonov, and Gunnar W Klau. DALIX: Op-
timal DALI protein structure alignment. IEEE/ACM Transactions
on Computational Biology and Bioinformatics (TCBB), 10(1):26–36,
2013.

[WKS11] Qingguo Wang, Dmitry Korkin, and Yi Shang. A fast multiple longest
common subsequence (MLCS) algorithm. Knowledge and Data Engi-
neering, IEEE Transactions on, 23(3):321–334, 2011.

[Woz97] Andrzej Wozniak. Using video-oriented instructions to speed up
sequence comparison. Computer applications in the biosciences:
CABIOS, 13(2):145–150, 1997.

[WPDK09] Inken Wohlers, Lars Petzold, Francisco Domingues, and Gunnar Klau.
PAUL: Protein structural alignment using integer linear programming
and lagrangian relaxation. BMC Bioinformatics, 10(Suppl 13):P2,
2009.

[WSVMW07] Liu Weiguo, Bertil Schmidt, Gerrit Voss, and Wolfgang Muller-
Wittig. Streaming algorithms for biological sequence alignment on
GPUs. Parallel and Distributed Systems, IEEE Transactions on,
18(9):1270–1281, 2007.

97

Bibliography

[XcF10] Shucai Xiao and Wu chun Feng. Inter-block GPU communication
via fast barrier synchronization. In Parallel Distributed Processing
(IPDPS), 2010 IEEE International Symposium on, pages 1 –12, april
2010.

[YXS10] Jiaoyun Yang, Yun Xu, and Yi Shang. An efficient parallel algorithm
for longest common subsequence problem on GPUs. In Proceedings
of the world congress on engineering, WCE, volume 1, 2010.

[ZC13] Kaiyong Zhao and Xiaowen Chu. GPU-BLASTN: Accelerating nu-
cleotide sequence alignment by GPUs. Poster at RECOMB, 2013.

[ZS04] Yang Zhang and Jeffrey Skolnick. Scoring function for automated
assessment of protein structure template quality. Proteins: Structure,
Function, and Bioinformatics, 57(4):702–710, 2004.

[ZS05] Yang Zhang and Jeffrey Skolnick. TM-align: a protein structure
alignment algorithm based on the TM-score. Nucleic acids research,
33(7):2302–2309, 2005.

98

	Contents
	1 Introduction
	2 Background
	2.1 Introduction
	2.2 Overview of CPU and GPU architectures
	2.3 Hierarchy of computational problems
	2.4 Coarse-grain parallelism
	2.4.1 Multicore CPU programming
	2.4.2 GPU programming

	2.5 Fine-grain parallelism
	2.5.1 Vector instructions
	2.5.2 Bit-level parallelism
	2.5.3 Instruction-level parallelism

	2.6 Parallelization in bioinformatics
	2.6.1 Sequence comparison
	2.6.2 Structure comparison

	2.7 Conclusion

	3 GPU accelerated QTL mapping
	3.1 Introduction to QTL mapping
	3.2 Methods and algorithms
	3.2.1 Linkage Analysis
	3.2.2 Linkage Disequilibrium and LDL Analyses
	3.2.3 Thresholds detection
	3.2.4 Algorithms for QTL detection

	3.3 GPU implementation
	3.3.1 Mapping computations on the GPU
	3.3.2 Optimizing GPU memory usage
	3.3.3 Reducing CPU/GPU transfers
	3.3.4 Optimizing homoskedastic analyses

	3.4 Experiments and results
	3.4.1 Execution times
	3.4.2 Speedups

	3.5 Conclusion

	4 Efficient Multi-GPU Computation of All-Pairs Shortest Paths
	4.1 Introduction
	4.2 Related Work
	4.3 Algorithm details
	4.3.1 Overview
	4.3.2 Step 1: Graph decomposition
	4.3.3 Step 2: Computing distances within each graph component
	4.3.4 Step 3: Computing distances in the boundary graph
	4.3.5 Step 4: Distances between non-boundary vertices

	4.4 Implementation
	4.4.1 Data organization
	4.4.2 Work analysis
	4.4.3 Parallel implementation
	4.4.4 Memory limitations

	4.5 Results and perspectives

	5 Parallel seed-based approach to protein structure similarity detection
	5.1 Introduction
	5.1.1 Alignment graphs
	5.1.2 Relation to protein structure comparison
	5.1.3 Measures for protein alignments

	5.2 Methods
	5.2.1 Our approach
	5.2.2 Overview of the algorithm
	5.2.3 Seed enumeration
	5.2.4 Seed extension
	5.2.5 Extension filtering
	5.2.6 Guarantees on resulting alignments' RMSD scores
	5.2.7 Result ranking
	5.2.8 k-to-k alignments
	5.2.9 Graph splitting

	5.3 Parallelism
	5.3.1 Overview of the implemented parallelism
	5.3.2 Coarse-grain parallelism
	5.3.3 Fine-grain parallelism

	5.4 Results and perspectives

	6 Conclusions and perspectives
	6.1 Conclusions
	6.2 Perspectives
	6.2.1 QTL detection
	6.2.2 Large graph analysis
	6.2.3 Protein structure comparison
	6.2.4 General remarks

	6.3 Acknowledgments

