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Résumé en français

Cette thèse envisage l’allocation efficace et non contraignante de ressources de

grilles de calcul à l’aide d’environnements virtuels. Elle a été encadreée par Isabelle

Demeure, directrice de thèse et Sverre Jarp, encadrant au CERN, où une grande

partie de ce travail a été réalisée.

Introduction à l’allocation de ressources en grilles

Grilles de calcul

Définissons tout d’abord ce qu’est l’allocation de ressources dans une grille de

calcul et quel est l’intérêt d’une allocation efficace. D’après Ian Foster, une grille

est une infrastructure matérielle et logicielle qui fournit un accès fiable, cohérent,

omniprésent et économique à des capacités de calcul haut de gamme [Fos02].

Par exemple, l’objectif d’une des expériences du CERN, CMS, est de valider par

l’observation une théorie physique qui prédit l’existence du particule, le boson de

Higgs. Le boson de Higgs serait la représentation particulaire de la masse, de la

même manière que le photon est la représentation particulaire de la lumière. Les

scientifiques de l’expérience CMS disposent d’algorithmes pour analyser des données

susceptibles de contenir des traces de l’existence de cette particule. Ces données

proviennent du CERN, à Genève, où le Large Hadron Collider (LHC) accélère

des particules et les fait entrer en collision au sein d’un détecteur appartenant à

l’expérience CMS. Ces collisions produisent des nouvelles particules dont les tra-

jectoires sont capturées par le détecteur de CMS. Les scientifiques de l’expérience

CMS vont devoir placer leurs tâches pour les exécuter sur des serveurs appropriés,

dans les centres de calcul du CERN ou dans d’autres centres de calcul qui stockent

les données issues du détecteur CMS.

Il existe quatre détecteurs sur le LHC, chacun correspondant à une expérience

1



2
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Figure 1: Fournisseurs et utilisateurs de ressources

similaire Chacun réunit une collaboration de 700 à 3000 scientifiques. D’une manière

générale, on parle d’utilisateur de ressources d’une grille. Une grille réunit d’une

part ses utilisateurs (dans notre exemple, les expériences de physique des particule)

et d’autre part les fournisseurs de ressource : les centres de calcul qui hébergent

les données et les serveurs qui servent à exécuter les tâches des utilisateurs. Ces

centres de calcul, en plus du CERN, sont répartis sur trois continents.

Caractéristiques de l’allocation en grilles

L’allocation de ressources est l’action qui consiste à placer des tâches sur des

serveurs appropriés. L’allocation de ressources en grilles de calcul a des caractéristiques

particulières. En effet, les grilles de calcul ont été construites initialement pour ces

applications d’analyse de données lourdes. Dans l’exemple précédent, les détecteurs

du LHC produisent ensemble 15 peta-octets de données qui sont stockées sur des

bandes magnétiques et répliquées sur des disques. Les tâches d’analyse de données

ne communiquent pas entre elles et utilisent régulièrement les mêmes algorithmes

sur des données différentes.

La difficulté propre à l’allocation de ressources en grilles vient du fait que les

grilles réunissent des utilisateurs de ressources et des fournisseurs de ressources qui

sont des entités autonomes, avec leurs propres objectifs. En particulier les serveurs

sont sous le contrôle des fournisseurs, bien qu’ils exécutent les tâches des utilisateurs.

La figure 1 schématise des fournisseurs représentés par leurs centres de calcul,

et des utilisateurs représentés par leurs tâches qui se renouvellent continuellement.

Les serveurs et les tâches ont différentes formes pour montrer qu’ils vont plus ou

moins bien ensemble.

Quel est l’intérêt d’optimiser l’allocation de ressources en grilles? Les applica-

tions du LHC vont tourner pendant 10 ans sur 40000 serveurs. Si on parvient à

améliorer de 5% l’efficacité de l’allocation pour ces applications, la communauté de
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physique des particules gagne 6 mois, ce qui équivaut à 20000 serveur-an, soit 1

million d’euros d’électricité (10GWh) pour l’alimentation et le refroidissement des

serveurs.

Contributions

Il s’agit d’abord d’identifier la métrique qu’on veut optimiser, puis de définir la

politique d’allocation, c’est-à-dire le mécanismes et les responsabilités mis en jeu

dans le processus d’allocation. Enfin, il s’agit de proposer une implémentation de

ces mécanismes.

Sur le premier point, nous avons identifié une métrique, le débit applicatif, qui

est intéressante à la fois pour les fournisseurs et pour les utilisateurs de ressources,

et nous avons élaboré un modèle prédictif d’un paramètre déterminant du débit

applicatif: la fréquence des défauts de cache. Pour prédire la fréquence des défauts

de cache, nous avons proposé un algorithme plus rapide que les algorithmes de l’état

de l’art sous l’hypothèsse que le cache est dédié à un processus donné. La rapidité

de prédiction est importante pour pouvoir évaluer la fréquence des fautes de cache

pour chaque couple (serveur, tâche) considéré. Dans un deuxième temps, nous nous

sommes affranchi de l’hypothèse du cache dédié et nous avons proposé le premier

algorithme de prédiction des fautes de cache en présence d’un cache partagé, c’est-à

dire dans le cas habituel où un système d’exploitation ordonnance dans le temps

des processus qui utilisent le même cache. Enfin nous observons que les prédictions

réalisées par ces deux algorithmes encadrent la valeur exacte de la fréquence des

fautes de cache.

Sur le deuxième point, nous avons d’abord observé que les grilles de calcul ont

d’abord été construites pour une allocation centralisée des ressources. Cependant,

une allocation décentralisée est de plus en plus utilisée de manière ”cachée”, c’est-

à-dire sur un deuxième niveau, en détournant et sans informer les systèmes du

premier niveau qui gèrent l’allocation de manière centralisée. C’est pourquoi nous

avons proposé une nouvelle conception de l’architecture de grille qui vise à rendre

l’allocation décentralisée ”visible”. Nous avons proposé un nouveau modèle de

représentation des allocations de manière à pouvoir raisonner sans avoir à lister

exaustivement toutes les tâches et tous les serveurs. C’est un modèle formel qui

représente une allocation sous la forme d’une allocation booléenne. On peut ainsi

faire des opérations sur les allocations. Ce modèle nous a servi pour définir une

condition d’optimalité des allocations décentralisées.

La politique d’allocation que l’on décrit dans le deuxième point peut ètre réalisé
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Figure 3: Somme des flôts

à l’aide de machines virtuelles à partir du moment où on dispose d’un outil pour

les configurer et les déployer. La dernière partie décrit une implémentation de cet

outil.

Proposition d’une métrique à optimiser et d’un

modèle associé

Plusieurs objectifs, une métrique

Le débit applicatif est une métrique intéressante car elle détermine la plupart des

objectifs des utilisateurs et des fournisseurs. Son expression est très simple, c’est

le nombre d’instruction par seconde. Prenons des exemples d’objectifs. Du côté

utilisateur, la minimisation du makespan et de la somme des flôts pondérés sont

deux objectifs possibles.

– Le makespan est représenté en figure 2. C’est la date de terminaison de la

dernière tâche moins la date de soumission de la première tâche. Le makespan

est intéressant pour une application dont on obtient le résultat à la fin de

l’exécution de la dernière tâche.

– La somme des flôts ets représentée en figure 3. C’est la somme pour chaque

tâche de sa date de terminaison moins sa date de soumission. Dans l’exemple

de la recherche du boson de Higgs, on ne sait pas a priori quel évennement

physique issu d’une collision dans un détecteur du LHC permettra, lorsqu’on

l’analysera de déceler la présence du boson de Higgs. Chaque tâche a une
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Figure 4: Effet de l’allocation sur le temps d’exécution d’après www.spec.org

0.47

1

T3

consommation
d'énergie

T4
S3
S4

T3
T4

S3
S4

Figure 5: Effet de l’allocation sur la consommation d’énergie d’aprè [ST03]

importance indépendamment des autres, et c’est la somme des flôts qu’il faut

optimiser pour qui veut être le premier à ”voir” le boson de Higgs.

Les fournisseurs, de leur côté, veulent minimiser leur consommation d’énergie, et

minimiser la gène occasionnée par l’exécution de tâches venant de la grille pour

l’utilisation interne et l’administration de leurs ressources.

Le débit applicatif intervient dans l’expression de tous ces objectifs.

Nécessité d’un modèle prédictif

Quel est l’effet de l’allocation sur le débit applicatif?

Les figures 4 et 5 représentent des cas où on a pris deux tâches et deux serveurs

et on a exécuté chaque tâche sur un serveur, puis on a interverti les combinaisons,

et on a exécuté à nouveau chaque tâche sur l’autre serveur. En intervertissant

le serveur associé à chaque tâche on a ainsi divisé environ par deux le makespan

global dans une expérience et la consommation d’énergie globale dans une autre

expérience. L’allocation de ressource a bien un effet sur le débit applicatif, qui se

répercute sur les objectifs des participants d’une grille.

Pourquoi un modèle prédictif est-il nécessaire pour évaluer le débit applicatif?
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Figure 6: Accès au cache ou défaut de cache

Si on se place dans le cas où un unique centre de calcul fournit les ressources

nécessaires à l’usage de ses utilisateurs. Ses serveurs sont connus et en nombre

limité. On peut les regrouper en plusieurs groupes homogènes. De même pour les

applications et les tâches à exécuter. Ainsi, pour prédire le débit applicatif d’une

tâche sur un serveur d’avoir déjà enregistré au préalable le débit applicatif lors de

l’exécution d’une tâche similaire sur un serveur du même type. C’est le principe des

benchmarks. Sur une grille on ne connâıt pas à l’avance toutes les tâches ni tous

les serveurs. Au moment où on considère l’éventualité d’un placement d’une tâche

sur un serveur il faut pouvoir prédire, à partir de certaines de leur caractéristiques,

quel débit applicatif résultera de l’exécution de cette tâche sur ce serveur.

Dans l’absolu, il y a plusieurs éléments à prendre en compte pour prédire le débit

applicatif.

– la capacité de la tâche à être parallélisée et la capacité du serveur à supporter

ce parallélisme

– les communications entre processus

– les accès disque et en particulier les défauts de cache qui donnent lieu à des

accès disque

– les accès mémoire générés par les défauts de cache.

Notre travail se limite à la modélisation des défauts de cache.

Modélisation des défauts de cache

La figure 6 montre un programme qui accède à une donnée. Si la donnée se

trouve dans le cache, l’accès est rapide. Sinon, la donnée doit être accédée en

mémoire, ce qui prend plus de temps. Une donnée peut se trouver dans le cache

si elle y a été enregistrée par un accès précédent. Mais il se peut qu’une donnée
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soit effacée du cache. Cela se produit dans deux cas. Tout d’abord, si le cache

est plein, l’enregistrement de l’accès à une nouvelle donnée efface une donnée du

cache. Par ailleurs, les processus se succèdent dans des quanta de temps rapides

sur le processeur. Entre deux quanta d’un processus, d’autres processus auront pu

effacer du cache certaines de ses données. Dans tous les cas, l’accès à une donnée

effacée du cache conduit à un défaut de cache.

Nous considérons successivement les deux causes d’effacement des données du

cache pour prédire la fréquence des défauts de cache qui en résultent.

Variable d’intérêt

Nous partons de l’hypothèse que le cache est plein et qu’un seul processus utilise

le cache. Dans ce cas un défaut de cache est du à l’accès à une donnée qui a été

effacée au préalable.

On suppose que le cache est totalement associatif, et LRU, c’est-à-dire qu’il

implémente la stratégie de remplacement Least Recently Used. Lorsqu’une donnée

est effacée du cache, la donnée sortante est la donnée la plus anciennement utilisée.

Cette hypothèse nous permet de réaliser une prédiction simple des défauts de cache.

La figure 7 montre des accès successifs à des données symbolisées par des lettres.

On y a représenté la taille du cache, d’une manière qui montre que le cache contient

six données. La flêche verticale symbolise un nouvel accès. Deux cas se présentent.

Soit, comme dans le cas de la donnée b, il y a eu plus de données accédées après

le dernier accès à b que ne peut en contenir le cache. Dans ce cas b n’est plus

dans le cache et on a un défaut de cache. Soit, comme dans le cas d’un accès à

r, il y a eu moins de données différentes accédées depuis le dernier accès à r que

de données dans le cache. Par conséquent aucune donnée accédée depuis le dernier

accès à r n’a forcé à effacer r. La donnée r est toujours dans le cache, et son accès

ne conduit pas à un défaut de cache.

La distance de pile est le nombre de données différentes accédées depuis l’accès
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à la même donnée. On devine sur cet exemple une propriété intéressante de la

distance de pile. Si la distance de pile est supérieure à la taille du cache, on a un

défaut de cache. Dans le cas contraire, il n’y a pas de défaut de cache.

Estimation par fitting

On propose d’effectuer une estimation par fitting de la loi de variable aléatoire

qui décrit les observations de la distance de pile.

Sur la figure 8 on a tracé la distance de pile des accès successifs d’un processus

de Spec CPU 2006, dans l’ordre chronologique. La ligne horizontale montre la

taille du cache c en ordonnée. D’après les remarques précédentes, pour trouver

la fréquence des défauts de cache il suffit de compter le nombre d’accès dont la

distance de pile est au-dessus de cette ligne, et d’en prendre le ratio par rapport au

nombre total d’accès.

Le protocole que nous proposons est le suivant:

1. Estimer la loi de la distance de pile Σ par fitting

2. Utiliser les paramètres de la loi obtenus pour calculer P(Σ > c)

On pourrait très bien se limiter à cette analyse directe, mais on opte pour une

analyse un peu différente, biaisée. Cela ne nous intéresse pas d’avoir un fitting

précis pour les données basses de la distance de pile. On biaise l’estimation de

manière itérative. On fait une première estimation. On calcule les moments de la

loi. Ensuite on utilise cette première estimation pour générer de nouvelles valeurs,

et on remplace les valeurs observées basses, celles qui ne nous intéressent pas, par

les valeurs générées, et on reproduit l’estimation à partir de ce nouvel ensemble de

valeurs. On montre qu’en répétant le processus l’estimation est meilleure pour les

valeurs hautes de la distance de pile.
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Figure 9: Qualité des prédictions

Précision, rapidité et intérêt

La figure 9 représente le résultat de plusieurs analyses et prédictions pour un

benchmark de Spec CPU 2006. L’expérience a été faite sur la plupart des bench-

marks de Spec CPU 2006 et celui-ci est représentatif.

Avec 27 échantillons, les prédictions obtenues varient beaucoup. Plus on utilise

d’observations de la distance de pile, plus la variance des prédictions diminue et

les prédictions convergent vers une valeur plus proche mais toujours différente de

la valeur réelle. Cela signifie qu’on n’a pas réussi à représenter exactement les

observations avec une loi simple de variable aléatoire. L’estimation biaisée est

meilleure pour les valeurs hautes et moins bonne pour les valeurs basses. Comme

ce sont les valeurs hautes qui nous intéressent (proches de la taille du cache),

l’estimation biaisée nous permet d’être plus précis sur la prédiction des défauts de

cache.

Cette méthode est efficace car la signature d’une tâche (les caractéristiques de

la tâche que l’on transporte pour effectuer les prédictions) se réduit aux moments

de la loi de probabilité de la distance de pile. Une distribution de Pareto généralisée

par exemple, a seulement trois moments. Par ailleurs, la fréquence des défauts de

cache est la probabilité que la distance de pile soit supérieure à la taille du cache. Ce

calcul est immédiat car il s’agit de la fonction de répartition de la loi, directement

calculable à partir de ses moments. C’est un calcul de complexité constante, tandis

que les algorithmes à base d’histogrammes ont une complexité linéaire du nombre

d’observations retenues.

On obtient un taux d’erreur qui est souvent proche de 1%. L’analyse est faite

une fois pour un algorithme donné, et peut être réutilisée lorsque le même algorithms

sert à analyser des données de mêmes structures.
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”Cache thrashing”

Affranchissons nous de l’hypothèse selon laquelle le cache est réservé à l’usage

d’un processus. Lorsque plusieurs processus se partagent le processeur, leur usage

du processeur alterne selon des quanta de temps successifs. La figure 10 montre

comment le cache se remplit lors d’un quantum de temps dans l’hypothèse où il

ne contient aucune donnée utile au début. Chaque accès entrâıne un défaut de

cache et ajoute une donnée. Lorsque le cache est plein, on se retrouve dans le cas

précédent.

Le nombre de défauts de cache à l’accès n du quantum est le nombre de données

dans le cache, auquel on ajoute, si le cache est plein, la probabilité de défauts de

caches dans l’état stationnaire multiplié par la durée de l’état stationnaire.

E[λn] + (n− E[∆|∆ < n]) P(∆ < n)P(Σ ≥ c)

Les différents éléments de cette équation peuvent être calculés si on considère que

le nombre de données dans le cache suit un processus de Markov.

Modèle de Markov

A partir du moment où les obervations de la distance de pile sont iid (indépendantes,

identiquement distribuées), le nombre de données du processus en cours présentes
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Figure 12: Qualité de prédiction sous les deux hypothèses

dans le cache est décrit par les états de la châıne de Markov représentée en figure

11.

k est le nombre de données dans le cache. Si k < Σ, c’est qu’on accède à une

donnée qui n’est pas encore dans le cache, donc on ajoute cette donnée. On passe

ainsi à l’état k + 1 et on observe un défaut de cache.

La matrice de transition de cette châıne de Markov est bidiagonale. On peut

donc la diagonaliser et ainsi estimer directement les probabilités de ”remplissage”

du cache lors de tout accès, sans avoir à estimer ces probabilités pour tous les accès

précédents. La complexité de prédiction de la fréquence des fautes de cache est

donc quadratique de la taille du cache.

Encadrement de la valeur exacte

Nous avons proposé deux algorithmes. L’un suppose que le quantum de temps

alloué au processus est infini et le cache est plein, l’autre suppose que le quantum

est fini et que le cache se vide totalement entre deux quanta successifs du même

processus. Ces deux hypothèses permettent d’encadrer la valeur exacte des défauts

de cache. La figure 12 représente le cas d’un benchmark de Spec CPU 2006. On

retrouve des valeurs similaires dans avec les autres benchmarks de Spec CPU 2006.

Défauts de cache et débit applicatif

Nous nous sommes restreints à la prédiction des défauts de cache, bien que

la métrique qui nous intéresse pour le placement des tâche est le débit applicatif,

et qu’il faille prendre en compte d’autres paramètres pour le prédire totalement.

Une étude réalisée en 2009 évalue dans quelle mesure les défauts de cache ralen-

tissent l’exécution [BMT09]. Dans le cas où on a un cache dédié, les techniques

d’optimisation (prédiction de branche et préchargement des données) permettent
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Figure 13: Effet du ”cache thrashing” sur le débit applicatif - Tiré de [BMT09]
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Figure 14: Allocation par le méta-ordonnanceur

de réduire à quasiment zéro l’impact des défauts de cache. Dans le cas que l’on

a considéré pour la première fois dans cette thèse, où le cache est partagé entre

plusieurs processus, l’impact peut être relativement fort: de l’ordre de 200% sur

certains benchmarks.
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Proposition et caractérisation d’une politique d’allocation

décentralisée

Limites de l’allocation centralisée

L’architecture actuelle des grilles de production est faite pour l’allocation cen-

tralisée. Or les fournisseurs sont les seuls à avoir un accès direct aux serveurs, ce

qui pose un problème lorsqu’on veut qu’un méta-ordonnanceur organise l’allocation

dans son ensemble. Le méta-ordonnanceur ne peut pas accéder aux serveurs, il

peut seulement déléguer les tâches aux fournisseurs. De fait, le méta-ordonnanceur

réalise un équilibrage de charge entre les fournisseurs.

La figure 14 illustre ce qui se produit lorsqu’un utilisateur soumet une tâche à

une grille. La tâche est confiée au méta-ordonnanceur, qui lui même la déléguer à

un fournisseur. Le fournisseur choisi prend la responsabilité de placer la tâche sur

un de ses serveurs. La tâche s’exécute et lorsqu’elle est terminée, le résultat est

renvoyé à l’utilisateur.

L’utilisateur n’a donc qu’à soumettre sa tâche. Il n’a aucun contrôle par la suite,

jusqu’à ce qu’il reçoive le résultat si tout s’est bien passé. L’allocation n’est pas

réalisée en vue des objectifs des utilisateurs et des fournisseurs.

Allocation décentralisée ”dissimulée”

Les participants appliquent de plus en plus une nouvelle stratégie, que l’on

retrouve implémentée dans de multiples projets indépendants.

Les fournisseurs déploient des machines virtuelles qui n’ont aucune différence

avec des machines physiques du point de vue des utilisateurs et du méta-ordonnanceur.

C’est sur ces machines virtuelles qu’ils vont placer les tâches qui leur sont confiées.

Ils peuvent déplacer les machines virtuelles. Ils ont ainsi plus de liberté pour gérer
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Figure 16: Allocation décentralisée par CMS sur les serveurs de Fermilab, Krista
Larson, Mats Rynge Condor Week 2010

leur consommation de ressources et attribuer leurs serveurs à un usage interne ou

à des procédure de maintenance.

Une machine virtuelle est une couche logicielle basse qui prend le contrôle du

matériel et émule une machine physique. Une machine virtuelle est contrôlable (elle

peut être interrompue, relancée, déplacée) et isole des ressources.

Au lieu de lancer une tâche réelle les utilisateurs lancent un moniteur, une

”fausse” tâche est placée sur un serveur ou une machine virtuelle comme le serait une

vraie tâche selon le processus habituel d’allocation centralisée. Lorsque le moniteur

commence son exécution, il initie une connection avec l’utilisateur. En effet, le

moniteur ”connâıt” l’utilisateur et même si l’utilisateur ne peut pas initier une

connection depuis l’extérieur du centre de calcul, le moniteur peut l’initier depuis

l’intérieur. L’utilisateur peut ainsi ordonnancer ses propres tâches en les confiant à

ses moniteurs, et utiliser les moniteurs pour contrôler leur exécution.

Importance de l’allocation décentralisée

La figure 16 donne un aperçu de l’évolution de l’allocation décentralisée sur la

grille. Elle montre le temps de calcul pris par un utilisateur chez un fournisseur

grâce à une allocation décentralisée. Le projet d’allocation décentralisé mené par

CMS a été lancé en production en 2008. Il a permis d’allouer à CMS 25000 heures

de calcul des serveurs de Fermilab, et ce sont autant d’heures pendant lesquelles les

tâches réelles ont été dissimulés aux systèmes traditionnels de contrôle de la grille.
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Figure 17: ”Symmetric Mapping”

Allocation décentralisée ”visible”

Nous proposons une architecture où le composant central a un rôle différent. Au

lieu d’avoir la responsabilité de l’ensemble de l’allocation, il a pour but de mettre

en contact utilisateurs et fournisseurs pour que ceux-ci s’accordent sur la mise à

disposition et l’utilisation de machines virtuelles. Les fournisseurs obtiennent des

configurations de machines virtuelles. Le déploiement de machines virtuelles se

produit selon ces configurations. Les fournisseurs peuvent alors ordonnancer les

machines virtuelles sur leurs serveurs, et les utilisateurs peuvent ordonnancer leurs

tâches sur les machines virtuelles.

Cette architecture sépare les responsabilités des uns et des autres pour que

chacun puisse optimiser son objectif. La question est donc: sous quelles conditions

peut-on garantir que les objectifs peuvent bien être optimisés indépendamment?

Formalisation

Sous quelles conditions peut-on garantir que les objectifs peuvent bien être

optimisés indépendamment? Pour répondre à cette question, nous proposons un

modèle formel des allocations. Cette formalisation sert à raisonner sur les allocations

de ressources sans avoir à les construire.

On représente une allocation par sa fonction indicatrice, c’est-à-dire l’application

booléenne suivante:

a : Tasks×Resources× Time −→ {true, false}

qui renvoie true si la tâche considérée est allouée à la ressource considérée à l’instant

considéré. Cette représentation nous permet d’effectuer des opérations logiques et

ainsi de raisonner sur les allocations. Par exemple on dispose d’opérations et et ou
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sur les allocations.

Sans entrer dans les détails, on note l’opération que réalise un participant x

(fournisseur ou utilisateur) comme une projection depuis l’espace des allocations

vers un espace plus petit px(a). C’est l’action qu’il réalise en allouant soit ses

tâches soit ses serveurs aux machines virtuelles.

Condition d’optimalité

On montre qu’il existe une condition suffisante pour qu’une allocation unique

résulte des actions distinctes des participants et optimise chacun de leurs objectifs.

Ce résultat s’écrit:

arg max valuex, ∀x

Pour obtenir ce résultat, il suffit que les machines virtuelles déterminent la charge

pour le fournisseur, et déterminent les ressources pour les utilisateurs. Cette condi-

tion s’écrit:

px(a1) = px(a2)⇒ valuex(a1) = valuex(a2)

Cette condition signifie que chacun peut agir comme s’il était seul. Etant données

deux allocations qui résultent de la même action d’un participant, la valeur perçue

par ce participant est la même pour les deux allocations. En particulier, la valeur

perçue est indépendante de l’action des autres participants, grâce aux contraintes

qu’apportent les machines virtuelles.

Implémentation d’une architecture standard pour

gérer le déploiement

Déploiement de machines virtuelles

L’architecture que nous avons présentée nécessite le déploiement automatique

de machines virtuelles à partir de la donnée de leurs configurations. Nous avons

implémenté un tel système.

Une machine virtuelle s’appuie sur une image, c’est-à-dire la zone du disque

qui contient ses données et les partitions nécessaires au lancement du système

d’exploitation et des programmes de la machine virtuelle. Pour lancer une machine

virtuelle on utilise un moniteur de machine virtuelle. Notre implémentation repose

sur Xen, un contrôleur open source. Pour obtenir une instance de machine virtuelle,

c’est-à-dire une machine en fonctionnement, il faut d’abord installer l’image, puis
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Figure 18: Déploiement d’instances Xen
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Figure 19: Orchestration par SmartFrog

commander le contrôleur. L’outil que nous avons développé effectue le chargement

de l’image en lançant des opérations sur des shells de la machine hôte, et une

fois que l’image est chargée, commande le contrôleur pour lancer l’instance, en

effectuer le suivi, en détecter la terminaison ou le cas échéant, la terminer. Lors

de la terminaison, il effectue les opérations nécessaires sur l’image pour soit stocker

ses changements, soit les annuler.

Respect des configurations

Le déploiement est réalisé sur le domaine administratif d’un fournisseur de

ressources. Cependant, les machines virtuelles doivent être configurées automa-

tiquement, sans intervention du fournisseur, afin d’assurer le respect des configura-

tions sur lesquelles l’utilisateur s’est accordé avec lui.

Pour cela, on utilise SmartFrog, un quadriciel développé par HP Labs. SmartFrog
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est un système de déploiement de composants distribués qui permet de placer,

configurer, charger et orchestrer des composants distribués. Le système décrit en

section est en fait implémenté avec des composants SmartFrog. SmartFrog fournit

un language de configuration, qu’il interprète comme un arbre de composants où

un composant père configure, charge, contrôle, termine ou détecte la terminaison

des composants fils.

On interprète ainsi les configurations et on les transmets aux composants spécialisés

qui sont capables d’intéragir avec la machine hôte et le contr̂leur de machines

virtuelles pour déployer des machines virtuelles dans le respect de ces configura-

tions.

A titre de démonstrateur de sa validité, ce système a été utilisé au CERN pour le

déploiement de machines virtuelles préconfigurées afin d’effectuer des tests distribués

sur l’intergiciel de la grille du LHC.

Conclusion

Synthèse des contributions

Nous avons identifié le débit applicatif comme métriques d’intérêt pour chacun

des participants d’une grille, en ce qu’il intervient dans l’expression des différentes

fonctions objectif à optimiser. Nous avons défini un modèle prédictif d’un aspect

déterminant pour le débit applicatif: les fautes de cache. Il s’agit d’une première

étape réputée difficile dans le problème de la prédiction de performance. Pour cela

nous avons proposé le premier algorithme dont la complexité est constante sans que

cela nuise à la précision des résultats par rapport à l’état de l’art; et nous avons

proposé le premier algorithme réaliste, c’est à dire qui prend en compte les effets des

changements de contexte lors de l’alternance de processus. Nous avons évalués ces

algorithmes sur les benchmarks de Spec CPU 2006. Ils sont efficaces à condition

que l’analyse soit faite sur une portion d’exécution représentative de l’ensemble.

Ils évitent en particulier la simulation de l’ensemble de l’exécution, ce dont l’utilité

s’étend à d’autres domaines comme la conception de programmes et de processeurs.

Nous avons identifié le besoin de mise en place d’une allocation décentralisée

préalablement à toute tentative d’optimisation. Nous avons réalisé une étude

formelle pour donner précisément le bénéfice des machines virtuelles et leurs ”bonnes

propriétés”. Le modèle utilisé, où l’on représente l’allocation par sa fonction indi-

catrice, est probablement applicable à d’autres raisonnements sur les allocations.
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Travaux futurs

Il sera avantageux d’évaluer précisément l’impact de l’hypothèse ”indépendantes,

identiquement distribuées” sur les obsevations de la distance de pile pour la prédiction

des fréquences de défauts de cache. On peut aussi espérer que se poursuive l’effort

de modélisation de la performance des calculateurs, et qu’on obtienne un modèle

relativement complet.

Dans le domaine de la politique d’allocation, il reste à définir précisément le

fonctionnement d’un système de négociation de machines virtuelles, qui met en

relation utilisateurs et fournisseurs de ressources. On pourra également s’intéresser

aux modèles et à l’implémentation des objectifs des différents participants, que

nous avons seulement survolés dans la thèse. Enfin, les machines virtuelles actuelles

n’ont pas les caractéristiques précises de réservation de ressources qui permettent en

toute rigueur de garantir l’optimalité de l’allocation dans un système décentralisé.

De nouvelles implémentations de machines virtuelles peuvent être réalisées dans ce

sens.
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Summary

In the last decade, computing grids have brought together storage and servers

located across multiple institutions to support large-scale scientific applications. By

analogy with power grids, the original idea is to provide with seamless computing

power anyone who plugs in. However, as applications increase in demand and

multiply, the efficiency of the underlying resource allocation mechanisms deserves

attention.

This thesis presents the following contributions.

– We identify resource allocation patterns in grids and we compare them to

resource allocation patterns on single clusters.

– We identify a common pattern (Late Binding) in the way that several applica-

tions have recently bypassed the mainstream grid mechanism (Metaschedul-

ing) in order to take more control for better perceived performance.

– We propose a new pattern (Symmetric Mapping) that achieves separation of

control between multiple participants in resource allocation.

– We propose a new formal model to specify resource allocation strategies. This

model allows to represent dynamic scheduling under multiple constraints and

objectives.

– We transpose the problem of Multiple Administrative Domains (MADs) from

the area of fault tolerance to the area of distributed computing; we identify

it as distinctive of grids among other computing systems; and we identify

Symmetric Mapping as a solution.

– We propose an implementation of Symmetric Mapping based on virtual ma-

chines. As part of the implementation, we propose a system that deploys and

manages multiple virtual machines based on declarative descriptions.

– We propose a system that detects service termination and resumes discontin-

ued services on newly elected servers, in order to maintain an implementation

of Symmetric Mapping, or any system that requires permanent services on

transient servers.

– We propose a new method to analyze tasks and predict cache performance

on various servers, in order to dynamically match tasks to adequate hetero-

geneous computing resources such as obtained on a grid. The method relies

on fitting memory access patterns with well known probability distributions.

The task signature is reduced to constant size and prediction is reduced to

constant time.

– We propose the first evaluation of cache thrashing, in order to make realistic
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performance predictions for time-shared CPUs. The analysis is based on a

new Markov model of LRU caches. It yields a lower and a higher bound of

the cache miss ratio in presence of competing processes.

Dans la dernière décennie, les grilles de calcul ont permis de réunir des ressources

de stockage et de calcul de multiples institutions pour pourvoir à des applications

scientifiques de grande ampleur. Par analogie aux grilles électriques, l’idée d’origine

est de fournir de manière transparente de la capacité de calcul selon les besoins.

Cependant, alors que les applications se multiplient, l’efficacité des mécanismes

sous-jacents d’allocation de ressources mérite l’attention.

Cette thèse présente les contributions suivantes.

– Identification des patterns d’allocation de ressource, et comment ils ont évolué

depuis les clusters isolés jusqu’aux grilles qui s’étendent sur plusieurs institu-

tions autonomes.

– Identification d’un pattern commun ( Late Binding) dans la façon dont plusieurs

applications contournent depuis peu le méccanisme habituel ( Meta-scheduling)

dans le but d’obtenir une mainmise accrue sur l’allocation de ressources et de

palier à certains manques d’efficacité.

– Proposition d’un nouveau pattern ( Symmetric Mapping) qui permet d’obtenir

la séparation du contrôle entre les fournisseurs et utilisateurs de ressources.

– Proposition d’un nouveau modèle pour spécifier des stratégies d’allocation de

ressource. Ce modèle permet de représenter l’allocation dynamique, ainsi que

de multiples contraintes et objectifs.

– Transposition du problème des Domaines Administratifs Multiples (MADs) du

domaine de la tolérance aux fautes à celui du calcul distribué. Identification

du problème MAD comme problème distinctif des grilles parmi les systèmes de

calcul distribué. Identification de Symmetric Mapping comme une solution.

– Proposition d’une implémentation de Symmetric Mapping basée sur les ma-

chines virtuelles, et dont l’un des éléments déploie et contrôle des multiples

machines virtuelles à partir de descriptions déclaratives.

– Proposition d’un système qui détecte la terminaison d’un service et relance

tout service interrompu sur un serveur nouvellement sélectionné, afin de

maintenir une implémentation de Symmetric Mapping, ou tout système qui

nécessite des services permanents sur des serveurs transitoires.

– Proposition d’une nouvelle méthode pour l’analyse des tâches et la prédiction

de performance afin d’associer de manière dynamique des tâches aux serveurs

adéquats. La méthode s’appuie sur l’estimation de patterns d’accès mémoire
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par des distributions de probabilité connues. La signature des tâches est

réduite à une taille constante et la prédiction est effectuée en temps constant.

– Proposition de la première évaluation du cache thrashing, afin de permettre

des prédictions de performance réalistes pour les CPUs partagés par plusieurs

processus. L’analyse est basée sur un nouveau modèle de Markov des caches

LRU. Elle donne une borne supérieure et une borne inférieure de la proportion

de fautes de caches en présence de processus concurrents.
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Introduction

CERN experiments in high energy physics attract scientists from around
the world to analyze data produced by particle accelerators. In 2001, the Data-
Grid project began in order for physicists to execute analysis close to the data,
at CERN or other computer centers that host copies. In the same year, the
TeraGrid project started in the United States to support particle physics exper-
iments at Fermilab. Progressively, more infrastructures appeared, with national
or regional initiatives, to offer computational power to scientific projects of all
kinds.

Today, grids allow scientists to submit their jobs and have them routed to
computer centers that support their experiment and host the required data, in
order to run on servers that exhibit the required configuration.

In 2009, the Large Hadron Collider (LHC), CERN’s most recent particle
accelerator, emitted its first beams. In 2012, it will operate at full capacity and
produce 15 petabytes of data a year. The load on servers is going to increase
and performance is going to be an issue. The analysis is planned for the next
10 years on 25,000 servers. A one percent performance increase will save 2,500
server-years on the LHC analysis alone.

Grid participants are resource users and resource providers. Users are sci-
entists federated in collaborations, also known as virtual organizations (VOs).
Members of a VO work together on the same research. Providers are institutions
that support specific VOs by giving them access to their computing centers, also
known as grid sites.

The following difficulties affect performance specifically in computing grids.
– Computing grids span multiple administrative domains. Participating in-

stitutions implement on their grid sites their own server configuration and
local allocation policies.

– The objectives of independent participants differ. The difference is par-
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ticularly remarkable between resource users, who want quick results, and
resource providers, who want limited costs.

– VOs come with their own software and workloads. Grid sites come with
their own platforms. Efficient scheduling requires to predict job execu-
tion time or carry out dynamic re-scheduling, which is difficult in these
conditions.

We address the following question: How can resource allocation on grids be
efficient for resource users without being obstructive to resource providers?

The first step in the proposed approach consists in using a new software
architecture to carry out resource allocation while separating the concerns of the
different participants. In this aim, we create a new resource allocation model
that allows to consider dynamic scheduling under multiple objectives. Using
this model, we propose an architectural pattern that allows for the separation
of concerns. We present a possible implementation that consists in using virtual
machines to decouple the environments where jobs execute from the backing
hardware. This decoupling helps isolate participants and eliminate conflicts
in the accomplishment of their objectives. We implement two elements of the
architecture: a system that maintains virtual machines in correspondence to
declarative descriptions; and a system that maintains permanent services on
transient environments.

In the second step, we address the matching of different jobs with different
resources, with limited information on both sides. In this aim, we contribute to
performance prediction of memory caches. Caches and memory access patterns
are responsible for performance variations that are difficult to anticipate. A
stochastic analysis of these patterns gives two results. First, it simplifies the
prevailing predictive approximation of cache misses frequency. Second, it reveals
that this approximation is in reality a lower bound, and it produces a method to
calculate a higher bound. This is the first method to predict cache performance
on actual operating systems with multiple processes.

The thesis is composed with an introduction, 6 chapters decomposed in two
parts, and a conclusion. The first part deals with software architecture and
the second part deals with performance prediction. Figure 20 illustrates the
continuity between the elements of the thesis.

– Chapter 1 is a survey of task mapping on production grids. Based at
CERN openlab, we could examine the systems in place and interview
their creators and users. In 2008, the main outcome of the survey’s orig-
inal publication was to identify the same pattern in multiple emerging
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projects and point it as a solution for Virtual Organizations (VOs) to
take better value from their alloted grid resources. Today this pattern is
known as Late Binding in grids, and is continually gaining wider adoption
among large VOs. Another outcome of the survey is to identify the fact
that grids span multiple administrative domains as the main difficulty for
performance, and that in order to improve performance in grids, the sep-
aration of concerns between participants has to be addressed early in the
architectural design.

– Chapter 2 proposes a new architectural pattern based on an analogy with
MAD systems (Multiple Administrative Domains), a formalism borrowed
from the study of fault tolerant systems. In order to formalize the MAD
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problem in grids, we introduce a new model for resource allocation that
allows to consider dynamic scheduling and multiple objectives. The prob-
lem is solved with a form of containment that isolates and decouples the
objectives of the participants. The solution yields a definition of the re-
quired isolation properties. We propose an implementation of the pattern,
where virtual machines are inserted to decouple task placement by users
from resource placement by providers.

– Chapter 3 details an element of the implementation that requires a proof of
concept. It presents a mechanism that configures, deploys and maintains
virtual execution environments from declarative resources descriptions.
Virtual machines serve as isolated execution environments for users to
freely access their alloted resources and implement their own schedulers.

– However, the distributed components of their schedulers need to be placed
on the same execution environments. Chapter 4 describes the implemen-
tation of a mechanism that guarantees the continuity of user services on
execution environments alloted for limited durations. The termination of
a service triggers a node election and service re-deployment.

– Once collaborations of users are free to schedule their own tasks, they
need to identify efficient mappings. We propose a method to evaluate
the affinity between tasks and processors in terms of cache performance.
The locality of memory accesses is analyzed in chapter 5 for fast cache
performance prediction. It gives a method for users to sample data access
patterns once for all on a binary, and lets online schedulers evaluate their
affinity with processor caches. Task analysis requires the observation of
a very small subset of memory accesses and is stored in a few variables.
It consists in fitting a relevant memory access pattern with known sta-
tistical distributions. Scheduler prediction is reasonable to very accurate
with constant complexity, both computational and in memory, while other
methods are based on histograms and exhibit higher than linear complex-
ity.

– Chapter 6 refines the analysis with a Markov model that describes how the
cache fills up with data. This model allows, for the first time, to predict a
higher bound of the miss frequency, taking into account cache thrashing,
i.e. the adverse effect of concurrent processes and context switches on
performance. Cache thrashing is of utmost importance because no single
process is ever isolated on common operating systems. Besides, we iden-
tify that the ”no thrashing” assumption covered in the literature and in



CONTENTS 32

chapter 5 gives a lower bound of the actual rate. Therefore, the maximum
prediction error is known.



Part 1.
Software Architecture



Chapter 1

A Survey of Task Mapping

on Production Grids

1.1 Introduction

Grids have been in production for more than a decade. The observation
of their emergence and evolution reveals actual constraints and successful ap-
proaches to task mapping across administrative boundaries. Beyond differences
in distributions, services, protocols and standards, a common architecture is
outlined. Application-agnostic infrastructures built for resource registration,
identification and access control dispatch delegation to grid sites. Efficient task
mapping is managed by large, autonomous applications or collaborations that
temporarily infiltrate resources for their own benefits.

1.1.1 Scope

The focus is on task mapping in production grids. The historical perspective
aims to help identify fundamental constraints behind grid resource allocation
and the logic of the evolution. The survey is written as a bibliographical basis
for further research towards efficiency in grids.

In this section, we define important concepts and specify the limits of our
study.

Definition 1 (Grid [FKT01]). Grids coordinate resource sharing and problem
solving in dynamic, multi-institutional virtual organizations.
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Originally, Virtual organizations federate individuals to participate in grids.

Virtual Organizations enable disparate groups of organizations and/or
individuals to share resources in a controlled fashion, so that mem-
bers may collaborate to achieve a shared goal [FKT01].

In practice, resource users are distinguished from resource providers.

Definition 2 (Virtual Organization). A Virtual Organization (VO) is a
collaboration of individual users, perceived from the outside as a single user
because they identify as such, who run the same applications and have common
objectives.

Definition 3 (Grid site). A grid site is a set of grid nodes under a single
administrative domain.

An institution or organization controls the management of its own sites, in-
cluding configuration, access control, resource allocation mechanisms and poli-
cies.

Definition 4 (Production grid). A production grid is a solution implemented
and used for the execution of large scale applications from independent collabo-
rations (VOs) on resources that span independent institutions (grid sites).

Definition 5 (Task mapping [KSS+07]). An important research problem is how
to assign resources to tasks (match) and order the execution of tasks on the re-
sources (schedule) to maximize some performance criterion of an heterogeneous
computing system. This procedure of matching and scheduling is called map-

ping or resource allocation.

The mechanisms developed for resource allocation include dynamic schedul-
ing and configuration, market simulations for utility and feedback control for
performance [MDP+00, ROLV06]. This survey determines which ones are used
in production. The analysis of production grids designs, their emergence and
evolution helps apprehend the fundamental grid constraints that really surface
in production.

The thesis is of limited relevance to connected areas:

Clusters The term grid is often misused to designate clusters inside a single
organization. A cluster is a set of connected computers inside the same
administrative domains. Definition 1 eliminates the confusion.
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Testbeds Since the focus in on task mapping, the analysis concentrates on
computational grids. It does not directly take into consideration testbeds
such as PlanetLab which are not meant to run computations but to ex-
periment the deployment of networked services [Fiu06].

Prototypes The goal is to capture constraints that govern grids, in order for
the reader to build insight on the relevance of research hypotheses in this
area. Therefore, the analysis does not cover grid prototypes, i.e. solutions
proposed as part of research on grids, and not used in production.

Desktop grids A desktop grid (such as SETI@home or any system based on
BOINC) is the distribution of computations from a single application to
personal computers [And03]. Task mapping faces less constraints on a
desktop grid than on a grid with many users and applications, and where
resource providers are entire institutions. However, the reader familiar
with desktop grids may understand that some elements of this analysis
also apply to their context.

Enterprise clouds Companies such as Amazon Web Services sell the access
to computing resources. Every paying user obtains dedicated and isolated
virtual storage devices and processors, which she manages just like her
own cluster. In grids, the responsibilities of resource users and providers
are not so well distinguished.

1.1.2 Outline

The remainder of this chapter is organized as follows. Section 1.2 describes
the aggregation of multiple sites into a grid. Distribution of control introduces
a number of challenges: security, user identification, information flow, seamless
resource integration, central monitoring, etc. Among them, strangely, resource
allocation is a side concern and remains constrained. Section 1.3 identifies con-
straints on allocation and their impact on performance. To regain performance,
major users centralize control on temporarily accessed resources. Section 1.4
presents this trend and characterizes the resulting environments on which effi-
cient allocation can take place.

1.2 Federating resources

Grid infrastructures take on a distinctive challenge. They aggregate re-
sources from different institutions to run multiple applications from multiple
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users. Section 1.2.1 presents major grids, their applications and their partici-
pants, and section 2.3 presents the motivation of their federation in grids. They
share workload constraints (section 1.2.3) and parallelization methods (section
1.2.4). The initial idea was to replicate the structure of cluster management
systems (section 1.2.5) to face the same problems in the wide area 1.2.6.

1.2.1 Infrastructures

Grids entered production around year 2000 to support scientific applications.
In scientific grids, academia or other public-funded institutions voluntarily offer
a certain amount of their computing resources to external scientific projects.

A few grid infrastructures scale to tens of thousands of nodes. They aggre-
gate computing, data warehousing and networking facilities from several insti-
tutions. They distribute middleware to operate resources and manage users and
applications. Grid specific components are often open-source academic projects.

The following is a non exhaustive list of grid infrastructures.
LCG is the Computing Grid for the Large Hadron Collider, CERN particle

accelerator in Switzerland. It aggregates sites mainly in Europe, but also
in Taiwan and Korea. It groups together over 41,000 CPUs from 240
sites [And04]. The LCG is supported by the European Commission and
more than 90 organizations from over 30 countries. Participating regions
identify their contributions separately like GridPP in the UK [tGC06].
LCG resources also support applications from different scientific domains.
It forms a general-purpose European grid. EGEE (Enabling Grids for
E-sciences) carries out its coordination at CERN from 2003 to 2009 and
EGI (European Grid Initiatives), a federation of national projects, from
2010.

OSG The Open Science Grid started in 2005. It is funded by U.S. LHC soft-
ware and computing programs, the National Science Foundation (NSF),
and the U.S. Department of Energy. It continued Grid3, started in 2003
[Ave07].

TeraGrid started in 2001 with funds from the NSF to establish a Dis-
tributed Terascale Facility (DTF). It includes collaboration from 9 major
national computer centers in the U.S. It provides 250 teraflops of comput-
ing capacity and plans to integrate a petaflop system [Pen02].

NorduGrid was funded in 2001 by the NORDUNet2 program to build a
grid for countries in northern Europe. The NORDUNet2 program aimed
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to respond to the ”American challenge” of the Next Generation Initiative
(NGI) and Internet2 (I2). NorduGrid provides around 5,000 CPUs over
50 sites [EGK+07].

Naregi The Japanese grid project National Research Grid Initiative started
in 2003. It is deployed in beta on a 3,000 CPUs testbed and targets the
PetaFLOPS in 2010 on national computer centers. The software devel-
opment is done by private companies (Fujitsu, NEC, Hitachi, NTT). It is
funded by the Ministry of Education, Culture, Sports, Science and Tech-
nology (MEXT) [Miu06].

Each of these grids is distinctive by the hardware resources integrated, by
the organizations supplying these resources, by the projects supported, and by
the middleware.

These infrastructures must not be confused with software development projects
like Gridbus 1, Globus 2 and VDT 3 which distribute consistent sets of grid
middleware components and are active in the standardization effort [FKNT02].
Grid infrastructures use and re-distribute some of these components [ABK+04].

1.2.2 Objectives

Participants in grids usually have one of the following intents. They either
want to consolidate CPU cycles or to avoid data movement.

Consolidated resources from multiple institutions make it possible to solve
problems of common interest where the efforts of a single institution would
require unreasonable execution time. The resolution of NUG30, a quadratic as-
signment problem, illustrates the use of a grid for High Performance Com-

puting (HPC) [ABGL00, GLY00]. The intent in HPC is to maximize the
execution speed of each application. However, supercomputers are better suited
for HPC in general. They offer a lower latency between computing units and
schedule processes at a lower level.

By contrast with HPC, High Throughput Computing (HTC) systems
intend to maximize the sustained, cumulative amount of computation executed.
A grid consolidates resource allocation from multiple institutions and accepts
applications from external collaborations. Its overall throughput is potentially
higher than the sum of the throughputs of participating institutions acting sep-
arately. However, an improvement is realized only if allocation is sufficiently

1. gridbus.org
2. globus.org
3. Virtual Data Toolkit: vdt.cs.wisc.edu
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accurate and responsive.
Grids have been prominently driven by the will to analyze unprecedented

amounts of data. Experiments at CERN, the European Center for Nuclear
Research, and Fermilab, an American proton-antiproton collider, attract col-
laborations of particle physicists who account for most users of LCG, OSG,
TeraGrid and NorduGrid [Ter02, GCC+04]. They search for interesting events
in the vast amount of data generated by detectors. The dozens of petabytes
of data generated by the Large Hadron Collider (LHC) are totally replicated
on a few primary sites and partially on secondary sites to avoid further data
movement. Grids are interesting for distributed data analysis when it is
beneficial to run computations on the computer centers that store the data in-
stead of transferring data to every single user. However, the gain depends on
the capability to appropriately distribute data in the first place and to map
tasks according to data location.

1.2.3 Applicable workloads

In order to characterize the candidate applications to be ran on a grid, we
introduce a few definitions.

Definition 6 (Divisible [BDM99]). A divisible task is a computation which can
be divided with arbitrary granularity into independent parts solved in parallel by
distributed computers.

Definition 7 (Embarrassingly parallel [Har03]). A problem of size N is em-

barrassingly parallel if it is ’quite easy’ to achieve a computational speedup
of N without any interprocess communication.

Definition 8 (Partially data parallel [Har03]). A partially data parallel prob-
lem divides the input data into a number of completely independent parts. The
same computation is undertaken on each part. It may require pre and post
processing and redundant computations to avoid communication.

Divisible, embarrassingly parallel applications are most relevant to grids be-
cause they can be parallelized with appropriate granularity and do not generate
communication overhead [GMP07, LSV06]. More precisely, partially data par-
allel applications are the most frequent. For instance, a sky map is decomposed
into regions of arbitrary sizes for parallel analysis [AZV+02]. The output of a
particle physics detector is decomposed into sets of events, i.e. particles created
at the collision point.
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1.2.4 Job: the element of an application

Definition 9 (Job [SAB+05]). A computational job is a uniquely identifiable
task, or a number of tasks running under a workflow system, which may involve
the execution of one or more processes or computer programs.

In practice, Resource allocation or task mapping (def 5) consists in placing
jobs onto computers. VO members can prepare jobs manually. As an alterna-
tive, VOs port their applications to the grid with application-specific frameworks
that spawn jobs [Mac04]. A job is presented to the grid with instructions and
information necessary for its execution.

This information includes requirements that constrain the allocation in order
to place the job on appropriate resources. In practice, a job is typically placed
on a general purpose desktop computer or batch server. Requirements specify
the operating system flavor, application software and data. No substantial data
is transfered along with a job. However, if data is not present on the node, a
job placement triggers a transfer from a remote storage.

1.2.5 On single administrative domains

This section looks at local resource management systems. Such systems
manage grid sites internal resources. Grids initially attempted to replicate their
principles.

Pure batch systems fundamentally differ from systems designed with inter-
active execution in mind. The former submit jobs while the latter connect to
resources.

Batch job submission

Batch schedulers use mature techniques to essentially manipulate job queues
[CCF+94]. They dispatch jobs to balance the load between execution nodes and
order them according to precedence policies. In the following we lists some of
the most popular batch scheduler systems.

LSF Load Sharing Facility started with Utopia, whose authors created Plat-
form Computing, a company with now 360 employees [ZZWD93].

PBS Portable Batch System is the flagship product of Altair, a 1200 employees
corporation [Hum06]. It was originally developed at NASA since 1993
[Hum06]. PBS proposes different scheduling policies, implemented in two
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Figure 1.1: Generic batch system

different systems, Torque and Maui, and a language to configure them
[BHK+00].

SGE DQS (Distributed Queuing System) started at Florida State University
in 1993. In 2000, Sun acquired all rights and renamed it Sun Grid Engine.

Figure 1.1 shows the standard features of a generic batch system. A master
assigns jobs to queues depending on priorities and expected execution times.
When actual execution times are very different from expectations, the master
reorders jobs within and between queues. After a job started to execute, the
master can still checkpoint and migrate it if the job or the operating system
provides the capability.

Connection to resources

Condor is a particular resource management system. Widely used for re-
source allocation in clusters, its principles contrast with the other cluster man-
agement systems. Condor does not push jobs to nodes. Instead, it connect users
and resources.

Condor started in the 1980’s with the intent to select idle CPUs for use by
active users.
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Figure 1.2: Condor

Figure 1.2 shows how this is done. When some resource is needed, a Clas-

sAd 4 is emitted. On the other hand, when a CPU is idle, it also emits a
ClassAd. A Collector collects ClassAds for the Matchmaker to find best
matches. The Schedd, for Scheduler Deamon, is the process that sends the
user ClassAd. The Startd, for Start Deamon, sends the resource ClassAd.
When a match is decided, the Scheduler notifies the Schedd with the addresss
of the Startd. The Schedd and the Startd spawn two processes responsible for
the communication [RLS98].

Some grid sites use Condor as an alternative to batch schedulers. Meta-
schedulers use Condor matchmaking to match job requirements with grid sites
capabilities [TTL02].

1.2.6 Allocation concerns

In general-purpose distributed computing, resource allocation includes the
management of resource reservation, co-allocation, inter-process communica-

4. from Classified Advertisement
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tion, priorities, dependencies, interactive jobs and process migration [CK88].
Grids must re-invent new ways to address these concerns.

Resource reservation Given that a central resource management system can-
not pervade grid sites, reserving resources from the grid eventually means
reserving resources from a grid site. Negotiation and reservation proto-
cols exist [CFK+02]. However, the general consensus is that, in order to
avoid intrusion, resource providers only offer best effort, i.e. no guaran-
tees. Guarantees with limited intrusion to resource owners would require
dynamic re-allocation inside and across grid sites [CGR+06].

Co-allocation Job co-allocation, i.e. the co-allocation of several jobs to the
same node in order to improve resource utilization, is subject to grid sites
policies. Resource co-allocation, i.e. the synchronous allocation of several
nodes to a set of jobs would require reservation mechanisms [CFK99].

Inter-Process Communication (IPC) IPC occurs if jobs communicate at
runtime. This would require resource simultaneous allocation, and a com-
munication path with low latency between execution nodes.

Priorities Institutions prioritize the projects they support. They regulate pri-
orities at the level of their local schedulers and by declining job submissions
based on the issuer’s identity.

Dependencies Some tasks use the result of others. Task dependency graphs
can be specified for bulk submission on single administrative domains.
To execute dependent jobs on multiple sites, users must wait for a job
completion before submitting a new job that requires its result [DSS+05].

Interactive jobs Some tasks require inputs from the application or the user to
proceed. Condor supports this kind of communication. However, grid sites
restrict connexions initiated from the outside. In addition, users cannot
in general reserve resources or predict execution windows. Therefore, the
job must initiate all communications.

Process migration Condor, LSF or a grid site operator can migrate running
jobs inside a single site if the operating system or the job provides the
capability [MDP+00]. Production grids do not support migration by users
because it would be an intrusion to the resource provider. They do not
support migration across grid sites because not all sites support migration.
In general, if a resource is preempted, jobs are simply discarded.

All these concerns are solved on local clusters. On grids, additional constraints
make their resolution more complex: latency between sites is inherently high;
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access to data is not uniform; the development of the infrastructure is separated
from the development of applications; and grid sites are independent administra-
tive domains. Each of these four constraints would require proper investigation.
The following section shows the particular importance of the grid sites admin-
istrative independence.

1.3 Disruptions to resource allocation

This section explains how the independence of resource providers determined
a de facto choice for a resource allocation model. Despite ideals of ubiqui-
tous resource presence inspired by power grids, it appears that computing grids
emerged with only basic batch allocation capabilities. They revive at a different
scale the history of computer systems [Cer94].

Before addressing resource allocation, grids are shaped by other concerns
that result from the independence of grid sites: the need for a site to screen
users, apply its own policies and integrate its own systems and resources. These
determinants suffice to draw a simple picture of the level of freedom left to
resource allocation.

Section 1.3.1 shows how the independence of grid sites forces to delegate job
management. Delegation breaks the continuity of job control and its connection
to the user (section 1.3.2). In addition, it introduces unpredictable delays (sec-
tion 1.3.3). To ensure interoperability of all grid sites, only remains the minimal
control supported by all local management systems (section 1.3.4).

1.3.1 Delegation

Global resource allocation is disrupted by grid sites autonomy.
In spite of their different nature, production grids reproduced the central

control designed for single administrative domains. Under a single administra-
tive domain a central scheduler assigns each job to a node (see section 1.2.5).
Similarly, in a grid, a central meta-scheduler or broker assigns each job to a grid
site [CFK04].

Definition 10 (Broker [ABK+04]). A grid resource broker is a service with
which the end users interact and that performs resource discovery, scheduling,
and the processing of application jobs on the distributed Grid resources.

The authority of the meta-scheduler ends at the boundaries of independent
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Figure 1.3: Delegation of job submission to Globus Resource Allocation Man-
ager (GRAM)

resource providers. Since interference is proscribed, resource aggregation is re-
duced to a simple superposition of grid sites.

On a grid site a gatekeeper screens jobs and their owners identity.

Definition 11 (Gatekeeper [Gra02]). The gatekeeper is a process that exists
before any request is submitted. When the gatekeeper receives an allocation re-
quest from a client, it mutually authenticates with the client, maps the requester
to a local user, starts a job manager on the local host as the local user, and
passes the allocation arguments to the newly created job manager.

Grid sites screen jobs because they only accept jobs submitted by trusted
users, and provide differentiated service levels to different users. Job allocation
is simply delegated by the broker to a grid site via its site gatekeeper because
this is the simplest way to let grid sites screen jobs and enforce their own access
policies.

In most infrastructures, authentication and delegation is processed by Globus
Resource Allocation Manager (GRAM, fig 1.3) [Fos06]. Submitted jobs queue
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at the grid broker. The broker never submits to a worker node directly. Instead
it finds an appropriate site and submits a job to its gatekeeper, along with a
certificate to identify the job owner. If the gatekeeper refuses the job, it sends
it back to the broker. If the broker accepts it, it starts a job manager process.
The job manager submits the job to the local batch system and collects job
status information.

As a consequence of grid sites autonomy, no single component in a grid
controls resource allocation from job submission to end node assignment. The
set of grid nodes is not considered as a whole: a node is never compared for
assignment with another node from another site.

Resources are segregated between grid sites. They are also disconnected
from users.

1.3.2 User and job disconnected

In single administrative domains, interactive jobs and runtime job migration
is possible using a direct connection between user and execution node. In grids,
jobs are delegated to sites. Execution nodes are not directly accessible from
outside of their sites. The connection is lost.

From Condor to Condor-G

With Condor (section 1.2.5 and fig 1.2), daemons take responsibility for a
task on both user node (the shadow) and execution node (the starter). These
daemons maintain a connexion between each other through which users or ap-
plications control remote computations at runtime. If the code is linked with ap-
propriate libraries, both sides communicate seamlessly. In addition, the starter
can checkpoint the task while it is running, and send checkpoints to the shadow,
possibly for migration on another execution node.

This connexion, runtime management and migration is lost with Condor-
G. Condor-G was produced in 2001 to introduce the matchmaking mechanism
in grid brokers [FTF+02]. G initially meant Globus because Condor-G was
designed to integrate with GRAM. Now it means Grid to denote the system’s
generality.

With Condor-G (fig 1.4) the Grid broker not only includes a matchmaker

but has also taken over the schedd that would be run by the user in Condor.
The schedd launches a grid manager, the process responsible for a job. This
means that the user fully delegates the job to the broker, including potential
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Figure 1.4: Condor-G

localization, control and communication at execution time. However, the grid
manager also drops these capabilities. It simply submits the job to the grid

site’s gatekeeper. As on standard GRAM, the gatekeeper decides to accept or
return the job to the broker. If it accepts the job, it forwards it to the startd,
which deploys a job manager process. The job manager, in turn, submits to
the grid site’s local batch system of choice, which can be other than Condor.

Grid manager and Job manager in Condor-G are the counterparts of Shadow
and Starter in Condor. Their functionality is reduced. They submit jobs and
do not manage them at runtime. Communication between each other is reduced
to notifications of job status.

gLite, a middleware distribution

Condor-G illustrates the loss of user control on their jobs. Condor-G is
integrated in distributions like gLite, LCG middleware [Lit07].

In a deployment of gLite, the broker is replicated to handle the load. On
job submission, a broker replica submits a Condor schedd to the selected site.
Once running on the site, the schedd sends a simple ClassAd to the broker to
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request the associated job. The schedd then forwards the job to the local batch
system. It knows which broker replica sent the job. Therefore it can commu-
nicate back the job status. In this case the Condor matchmaker is not used to
select the appropriate site but only to identify the request of a single schedd.
This construction makes little use of its components individual functionalities.

On that account, gLite also distributes a simpler system as a more recent
alternative. It consists in two simple java servlets, ICE and CREAM 5. ICE
implements the practical functionality of a gLite grid broker and CREAM in-
terfaces a local batch system on a grid site [And06]. ICE/CREAM reproduces
the functionalities of task mapping that have been achieved in practice in a cen-
tral component that federates multiple administrative domains. The result is a
simple batch job submission to grid sites with access control and site selection.

1.3.3 Out-of-date matching

A grid broker does not map jobs on execution nodes. Instead, it matches
job requirements against site resource advertisements. Advertised resources may
not hold when the job is scheduled to run.

Job description

A job carries a description of hardware and software flavor and configura-
tion, resources and data that it expects to find on the execution node. This is
done in a format chosen by the infrastructure. gLite uses Condor ClassAds (see
section 1.2.5), renamed JDL (Job Description Language). NorduGrid middle-
ware, ARC 6, has its own format called RSF (Resource Selection Language).
The Open Grid Forum, a standardization consortium assembling representa-
tives from industry and academia, recommends another variant: JSDL (Job
Submission Description Language) [SAB+05].

Resource description

Sites, on the other hand, advertise their resources. They do not publish
specific information for every node. Instead, they group their nodes into homo-
geneous clusters called computing elements [Chi04].

5. Computing Resource Execution And Management
6. Advanced Resource Connector
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Definition 12 (Computing element [ABD+07]). As a common abstraction,
the computing element (CE) refers to the characteristics, resource set and
policies of a single queue of the underlying management system.

At the Grid level, computing capabilities appear as computing elements

(each being a set of job slots to which policies and status information are asso-
ciated) that are reachable from a specific network endpoint.

A CE description includes information on operating system flavor, number of
processes and queue length. The same configuration is maintained on all nodes
of the CE. A grid broker does not make a difference between them. Therefore
each computing element has its own batch system. A site usually contains one
or a few computing elements.

There are several CE description formats: the GLUE schema, which stands
for Grid Laboratory Uniform Environment is the most used by early grids.
GLUE is specialized in grid resources [ABD+07]. The Common Information
Model (CIM) applies to distributed computing in general. It is recommended
by DMTF 7 and used notably in Naregi 8. Different formats can be converted
to ClassAds for processing by Condor matchmaker [BGK+03].

The grid broker delegates a job to the grid site that has the least loaded
matching CE at time of submission. Each computing element typically updates
its information every five to fifteen minutes. Added to a job’s queuing time on
the site, it gives the obsolescence of the broker’s resource perception.

Consequences

Out-of-date matching is not fault tolerant. For instance, some CE failures
result in jobs being considered terminated as they arrive. Before the malfunction
is acknowledged, jobs keep flowing to the CE and failing. This situation is called
a black hole.

Out-of-date matching proscribes fine-grained resource allocation. CEs and
jobs describe themselves in very broad terms. Indeed, the state of transient re-
sources such as cache, memory, disk and CPU cannot be communicated. There-
fore, their utilization cannot be optimized.

To summarize, a central decision system that preserves the independence of
grid sites fails to improve the efficiency of their aggregation. The following shows
that it cannot either provide better functionalities than those of individual sites.

7. Distributed Management Task Force: www.dmtf.org
8. National Research Grid Initiative: www.naregi.org
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1.3.4 Intersecting the capabilities of local systems

A grid broker must deal with any possible type of local resource management
system present on grid sites.

There are two ways to integrate interfaces: standards and translators.

Standards

In a first approach, grid brokers and grid sites must implement standard
interfaces 9 [Fos05]. Once a consensus is reached and all systems comply with
it, functionality is not lost along the path [FKNT02]. However, the process is
long and standards requires wide acceptance.

Translators

The second approach is pragmatic. Before standard interfaces are imple-
mented for all components in use, these components have to communicate any-
ways. Instructions from the grid broker, forwarded to the site, must be under-
stood by the variety of local batch systems available.

GAHP (Grid ASCII Helper Protocol) is a translation protocol originally
developed as part of Globus Toolkit [Fos06]. It translates instructions from the
grid broker to various implementations of a site’s gatekeeper, and from the site’s
job manager, i.e. the process that controls a job on a grid site (section 1.3.2),
to various local batch systems [NYI+05].

Unfortunately, the vocabulary of translators intersects the capabilities of the
systems they interface. With a few variants, it is reduced in practice to: submit

to submit a job, cancel to cancel a job submission and status to get the status
of a job submission [Reb05, NLJ+05].

1.3.5 Partial conclusion

The attempt to centrally orchestrate grid resources results in a simple su-
perposition of grid sites, no communication or control from the user at runtime,
a delayed, broad-grained knowledge of the resources, and the simplest existing
batch functionalities.

9. Standardization organizations involved in grid computing include OGF (Open Grid
Forum: ogf.org), IETF (Internet Engineering Task Force: ietf.org), OASIS (Organization for
the Advancement of Structured Information Standards: oasis-open.org), DMTF (Distributed
Management Task Force: dmtf.org).
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In practice, grid users have the option to skip the broker and submit directly
to grid sites. Experienced users often choose this option. The grid broker brings
little advantage outside of identifying grid sites.

In the next section, a recent trend shows that a decentralized allocation is
possible.

1.4 User-driven allocation

This section studies a decentralized approach that has recently gained mo-
mentum. In this approach, a large part of the allocation is processed by feder-
ated users and application frameworks.

This new trend is motivated by user concerns that do not find satisfaction
with traditional infrastructures (section 1.4.1). A way to bypass the standard
allocation process is identified in section 1.4.2. Section 1.4.3 shows how a frame-
work for large applications use this bypass, as well as VO allocation systems
(section 1.4.4). A Condor mechanism was found to be well suited for this pur-
pose (section 1.4.5). Section 1.4.6 shows how major VOs start to change their
way of allocating their tasks. This turn of events redefines the paradigms of
grid resource allocation (section 1.4.7).

1.4.1 User concerns

Users are concerned with problem-solving and performance.

Problem-solving Users and applications have constraints on task mapping:
job dependencies, interactivity, inter-process communication, prioritiza-
tion, etc. Given the loose coupling of grid resources, best suited applica-
tions are divisible into independent jobs. The absence of support for task
mapping constraints further restricts the class of applications that can be
handled directly.

Performance Low-level resources allocated to individual jobs determine the
performance, even with independent, standalone jobs [KSS+07]. A grid
assembles heterogeneous nodes. Task mapping must take into account
their differences in conjunction with job profiles. For example, a processor
with little cache would not handle well memory-intensive tasks, but it
could handle together a CPU intensive task and a task that only downloads
data [XZQ00].



CHAPTER 1. TASK MAPPING SURVEY 52

Figure 1.5: Late binding on a grid

Attempts for centralized task mapping do not achieve support for problem-
solving and performance. Between the authority of resource users and resource
providers, little remains to be controlled by a third party. Still, grid infrastruc-
tures centralize the access to different sites. Starting there, some large VOs
and application frameworks have the capacity to address their own concerns by
themselves.

The following identifies a common model, implementations, benefits, and
the new constraints in these environments.

1.4.2 Late binding

The initial intent of grids is to consolidate resources from multiple adminis-
trative domains for the benefit of multiple independent applications and users.
Serving all users as a whole has not yield substantial benefits. However, a
growing number of VOs and large applications successfully address their own
concerns with late binding.
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Definition 13 (Late binding). Late binding is an allocation strategy in which
a task is selected to run only once a placeholder is scheduled for it on identified
resources.

Figure 1.5 illustrates late binding on a grid. An allocation system is re-
sponsible for a set of jobs. It submits monitors to the grid broker (1). Each
monitor follows the normal job flow. The grid broker delegates it to a site gate-

keeper (2). The gatekeeper forwards it to a batch system. The batch system
assigns it to an execution node (3). Once running on the execution node, the
monitor connects back to the allocation system for actual job submissions (4).

Late binding allows for controlled start time, placement, and runtime com-
munication.

Controlled start time Jobs start as they are submitted.

Placement Monitors inspect resources, their location and configuration.

Runtime communication Communications initiated from inside a grid site
cross the site’s firewall.

1.4.3 Allocation by applications

An application that runs on a grid uses a module to spawn jobs. This module
simply submits jobs to the grid or schedules them with late binding.

In the absence of late binding, unpredictable delays before execution must
be expected. A study on a major infrastructure shows that half of the jobs wait
for more than five minutes between submission and execution, and 5% wait for
more than 15 minutes [GLMR07].

With late binding, application schedulers control start time and directly
interact with end nodes. They address job dependencies, interaction with the
user, interaction between jobs, real-time control, priorities and fault tolerance
[J.T06].

DIANE 10 is a framework to schedule applications on grids [Mos03]. The
project started in 2002 to port CERN applications to the DataGrid, the ancestor
of LCG. Other notable applications include genome sequencing and in-silico
drug discovery against malaria and bird flu [MHS+04, LHC+06].

DIANE uses late binding to minimize makespan, i.e. the time until the
last job completes. It keeps queues in front of each execution node and dynam-
ically re-assigns jobs to different queues. Re-assignment is triggered when new

10. DIstributed ANalysis Environment
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monitors start execution and bring new resources to the framework or when the
progress on a node is unexpectedly slow [J.T06].

The more jobs an application spawns, the more useful DIANE is. A high
job liquidity results in substantial gains from coordinated scheduling. Compa-
rable or greater liquidity is reached by centralizing jobs from the members of a
scientific collaboration.

1.4.4 Allocation by collaborations

A growing number of virtual organizations (VOs, def 2) take care of schedul-
ing for their members.

Examples

Particle physics is the area with the most grid users. In particle physics, A
VO is a collaboration that builds a detector and analyzes its data.

– At Fermilab, in the area of Chicago, CDF 11 and D0 12 study the results
of Protons-Antiprotons collisions, scheduled to analyze data until 2009.
MINOS 13 analyzes Neutrino oscillations.

– At SLAC, Stanford Linear Accelerator Center, BaBar 14 analyzes the vi-
olation of charge and parity (CP) symmetry in the decays of B mesons.

– At CERN, the European Center for Nuclear Research in Geneva, four VOs
are finishing to build detectors and preparing for data analysis for the
coming years. ATLAS 15 and CMS 16 are two general-purpose detectors
to analyze proton-proton and heavy ions collisions. Alice 17 studies Pb-
Pb collisions generating a quark-gluon plasma as in the early universe,
and LHCb 18 studies collisions of baryons containing the Beauty quark
for CP violation measurements and rare decays observations.

Other scientific domains are also represented. For example, BIOMED is a VO
that covers 3 domains: Medical Imaging, Bio-informatics and Drug Discovery.
BIOMED maintains application software for use on grids and domain-specific
grid portals [LHC+04, GSM+07].

11. Collider Detector at Fermilab. www-cdf.fnal.gov
12. www-d0.fnal.gov
13. Main Injector Neutrino Oscillator Search. www-numi.fnal.gov
14. from BB̄. www-public.slac.stanford.edu/babar
15. A Toroidal LHC ApparatuS. altas.ch
16. Compact Muon Solenoid. cms.cern.ch
17. Large Ion Collider Experiment. aliceinfo.cern.ch
18. Large Hadron Collider beauty. lhcb.web.cern.ch
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Why scheduling by VOs is appropriate

There are several reasons why the VO is a natural authority to schedule the
jobs of their users. Users identify to grid services as members of a VO. In the
same VO, users collaborate and share the same goals. They put in common
their knowledge, their efforts and their solutions.

Identity VOs provide grid users with an identity recognized by resource providers.
Grid sites identify VOs to define bulk resource supply contracts and au-
thenticate job owners [FKT01].

Cooperation VO members collaborate for a shared goal. Competition between
individual users is supervised for the benefit of the whole. For example, a
job can be delayed to improve overall performance, or to satisfy priorities.

De-multiplied effort Job submission is often naturally delegated to a few
expert VO members. The gap is narrow between centralized skills to
manage grid jobs and the development of a single allocation system for
the whole VO.

Knowledge VOs use a limited number of applications and algorithms. Their
jobs have known resource requirements. VO administrators know which
software configuration works on the execution node. They can evaluate
resources to accurately map their jobs.

Liquidity Finally, VOs can be large. For example, 1900 physicists collaborate
in ATLAS. The number of users and jobs, and the amount of resources
used raises opportunities for performance optimization.

Since VOs do not control the hardware, late binding is currently their only
option for scheduling.

Late binding by VOs

VOs request the highest possible/useful number of grid nodes and maximize
the computing throughput on these nodes.

Grid nodes are requested by submitting monitors as described in section
1.4.2. A monitor pretends to be a job and runs as long as allowed. Grid sites
set maximum durations, typically of 48 or 72 hours, after which the monitor
must terminate.

For this time period, monitors receive actual jobs from the VO and control
their execution. It appear to resource owners that jobs run for days. In fact,
actual jobs last for a few minutes to a few hours. They bypass the queues of
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traditional grid submission to be directly allocated on end nodes following a
strategy defined by the collaboration.

VO schedulers are relatively recent. Despite their performance they are not
widely identified in the literature. The following is a brief survey.

1.4.5 Sudden success of an old Condor mechanism.

Condor is designed to use temporary idling nodes, a strategy known as CPU

scavenging. To cope with transient resources, Condor implements late binding.
Besides, since 2001, Condor offers a mechanism called glide-ins to form personal
pools with nodes controlled by external batch schedulers. Since 2006, glide-ins
are used to implement late binding in grids.

Glide-ins for personal pools

Glide-ins are portable shell scripts that a user submits to external batch
schedulers. Once running on an end node, a glide-in launches a process equiva-
lent to a Condor startd that makes itself known to a matchmaker.

A standard Condor pool takes care of an organization’s resources and users
(section 1.2.5 and fig 1.2). The matchmaker serves all members of the organi-
zation. A Condor pool constituted with glide-ins is intended for personal use.
The matchmaker matches classads from the sender’s schedd with classads from
the glide-ins’ startd’s.

Glide-ins for late binding on grids

Only recently, a few allocation systems equipped with a Condor matchmaker
started to systematically send glideIns for late binding to grid nodes.

Once resources are identified, the remaining difficulty is to provide inbound
connectivity to grid sites. The starter initiates a connection with a proxy outside
of the grid site, the GCB (Generic Connexion Broker), and receives an identifier.
To communicate with the starter, the shadow sends a message to the GCB using
this identifier and the GCB redirects the packets [SL03, BSK05].

glideCAF

The Central Analysis Farm (CAF) of CDF, the particle physics VO and
Fermilab experiment, was extended in 2005 to use grid resources with glideCAF,
which integrates late binding with Condor glideIns [BHL+06].
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Cronus

An individual initiative in Atlas gradually gained momentum and led to
Cronus in 2006 [PW07]. In 2007, Cronus allocates a substantial part of Atlas
jobs and controls a dynamic pool of about 8500 CPUs infiltrated through LCG,
OSG and NorduGrid.

In addition to short-circuiting grid submission delays, Cronus manages data
distribution and load takeover.

Data distribution Considering that Atlas jobs do not consume network band-
width, Cronus downloads data in the background from major storage sys-
tems. Succeeding jobs do not wait for data transfers. Instead they are
placed where their data is already present.

NorduGrid plans in advance data downloads before jobs are scheduled for
execution, but LCG does not: jobs start execution by requesting the data
and stay idle until the download is complete. Cronus saves this idle time.

Load takeover Cronus lets glide-ins take over the jobs of others whose lease
is about to expire. This saves from 80% of the jobs failures.

glideinWMS

glideinWMS is a project started in 2007 by US CMS, the American part of
the CMS collaboration. It extends glideCAF and Cronus information system
[Sfi07].

1.4.6 An evolution of VO strategies

AliEn and job agents

Alice Environment, has been since 2001 the distributed data analysis envi-
ronment of ALICE, a CERN detector and collaboration [BPS03, SAB+03]. In
2004 it serves as a basis for the gLite middleware for LCG [LHA+04]. It keeps
evolving besides for ALICE and introduces the pull model. In this model, in-
stead of having the broker push jobs to computing elements (CE, section 12),
job agents that monitor CEs pull jobs when appropriate.

Definition 14 (Job agent [BPSGO04]). [The Job Agent is a] Web Service
allowing users to interact with the running job, send a signal or inspect the
output. Prior to job execution, the Job Agent can automatically install the
software packages required by the job.
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Pull model preserves from faulty configurations and black holes, i.e. the
situation where jobs keep flowing to a faulty CE (section 1.3.3). Pull model is
only a step away from late binding. Another VO, LHCb, takes this step together
with AliEn.

DIRAC and job pilots

DIRAC, Distributed Infrastructure with Remote Agent Control, started in
2003 for LHCb, another CERN detector and collaboration [vHCF+03, TGSR04].
In 2004, DIRAC follows AliEn’s pull model and ”glides in” job agents on exe-
cution nodes, obtaining so-called pilots agents [PSP06].

Jobs are classified on a central server in a number of queues. When a job
pilot requests a job, a queue is selected, known to contain the most appropriate
class of jobs, and one of the first jobs found on this queue is sent.

The pilot/glide-in mechanism is becoming the rule for large VOs. AliEn
quickly made the move to job pilots. In late 2005, the US Department of
Energy funded a project, Panda, that uses the same architecture as DIRAC to
manage ATLAS jobs on OSG [WLrW06, Nil07].

1.4.7 Specific constraints

Late binding on grids, as opposed to the use of dedicated clusters, presents
specific constraints for the deployment of task mapping systems.

Convoluted communication TCP or UDP communication can be instanti-
ated only from inside a grid site. Solutions are asynchronous, via messages
passing and polling, or involve registration to a proxy and packet forward-
ing [SL03].

Limited node control A job is unprivileged on a grid site. The same is true
for glide-ins and pilot jobs. Isolating jobs inside virtual machines might
allow for more control from the VOs [KDF04, GPJ+07].

Using late binding, computers accessed on the wide area may appear as a ded-
icated, local cluster, although a few differences remain. First, grid resources
are alloted for a limited period. Second, communication between remote nodes
exhibit some latency.

Transience Nodes leave the pool when their maximum lease period expires.
Other nodes join the pool when newly submitted job pilots / glide-ins
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Figure 1.6: Wide area (bottom) compared to local clusters (top).
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start execution. VOs operate on pools where nodes constantly come and
go.

Latency Both data access and communication between peers of a distributed
system are affected. Problems arise that were not present in the local area
context. Access to data is heterogeneous. Therefore, allocation must be
data driven. In addition, no single point has a complete knowledge of the
whole system state.

The upper part of figure 1.6 represents a network of computers taken from a local
cluster (top). Data is accessible everywhere, and communication is seamless.
The lower part shows a network of computers taken from remote grid sites.
Some are tightly connected, while other links exhibit some latency; and large
data is not accessible everywhere. Late binding convert the cross-organization
barrier into these few constraints.

1.5 Conclusion

Grids are world-wide aggregation of computational resources and demand
from multiple institutions. Systems that attempt to centrally orchestrate to-
gether grid resources and users did not count with the autonomy of adminis-
trative domains. The need to avoid obtrusiveness confined them to a simplistic
superposition of grid sites, instead of an efficient consolidation of resource man-
agement.

However, some applications generate enough liquidity to graft their own
opportunistic task mapping mechanisms. They have interest and capabilities to
check acquired resources against their tasks. They operate fine-grained, dynamic
mapping. They realize the move from resource allocation across autonomous
applications to usage-centric allocation across autonomous resource providers,
without a priori knowledge of resource topology.

Grids were designed to be usable by scientists inexperienced with resource
management. It turns out that large, experienced and powerful organizations
of users take more control that initially expected. With late binding, they turn
grids into on-demand resources, and they use them the same way companies use
resources from ”the cloud”.



Chapter 2

MAD Approach to Grid

Resource Allocation

2.1 Introduction

In grids, resource users and resource providers are distinct. The placement
of a task on a server involves both. They are bound in a contract, explicit or
tacit, that motivates their co-operation. However, since in general they report
to different institutions, they have distinct objectives.

– Users are generally interested in computing speed. Computing speed has
different definitions for a single large scale application and for a colla-
boration of individuals who constantly execute new tasks. User concerns
also include adaptation of software configuration, optimization of comput-
ing throughput, compliance with task priorities, minimization of resource
oversubscription if subscription is limited [CGV07], and prevention of re-
source undersubscription.

– Providers favor minimization of resource supply costs, i.e. minimization
of server activity and power consumption [CIL+07, JB07], optimization of
cooling efficiency [BF07], minimization of obstruction to servers mainte-
nance, to local use and local policies.

These objectives may conflict in the resource allocation process. Initially
based on voluntary collaborations, grids have not focussed on mitigating con-
flicts. As a result, compromises in performance and flexibility are made on both
sides. We propose to start with the separation of concerns. In this aim, we

61
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introduce an architectural pattern, Symmetric Mapping.
Design patterns were originally introduced for object oriented programming

by the Gang of Four in OOPSLA meeting [GHJV95]. They identify best prac-
tices to solve recurrent software design problems. They are defined in terms
of relationships between objects that compose the software. Similarly, in dis-
tributed systems, architectural patterns define component structures to solve
recurrent architectural problems [BMR+96b]. Famous examples include Model-
view-controller that isolates application logic from interface [Gre07], and Peer-
to-peer that decentralizes control and resources to all elements in a system,
making them functionally equivalent [CvR05].

Symmetric Mapping has his foundations in a new model of resource allo-
cation. The model is an analogy with the model developed for the study of
fault tolerance in distributed systems [AAC+05]. In a MAD 1 distributed sys-
tem, participants’ behaviors are not controlled. Instead, the system builds on
assumptions. Namely, a participant is rational or not, altruist or egoistic, or
byzantine (entirely unpredictable). In our case, we assume that participants are
selfish and rational, and the objective is to satisfy each of them independently.
To the best of our knowledge, our formalism is the first to use MADs principles
for resource allocation.

Section 2.2 details previous work. Section 2.3 identifies several participants
objectives. Section 2.4 introduces Symmetric Mapping. Section 2.5 simulate
its implementation on synthetic examples. The rest of the chapter presents
the model more formally. Section 2.6 introduces the fundamentals. Section 2.7
formalizes the problem. Section 2.8 establishes separation of responsibilities as
a solution.

2.2 Previous work

In this chapter, we propose a new architectural pattern with its foundations
in a new formal model. Relevant previous work includes the identification of
existing architectural patterns in the same area, and the existing formal models
that underly their emergence. This discussion is largely based on chapter 1.
Chapter 1 gives a historical perspective on resource allocation approaches in
grids. This section synthesizes the observed patterns and the underlying models.

Models based on queuing theory and game theory are considered, as well as

1. Multiple Administrative Domains
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models that formalize the notion of resource containment. Existing architectural
patterns are organized around Metascheduling, Late Binding, and economic
patterns.

2.2.1 Queuing models

The study of grid resource allocation is traditionally based on queuing theory
[CK88, All90, MAS+99, BBC+04, Van08]. So are grid systems in production
today [GDJ08]. The model we introduce in this chapter departs from queuing
theory and allows to consider resources that do not use queues, and events
that occur outside of queues, including co-allocation and live-migration. This
fine-grained, dynamic view is necessary to capture the level at which users and
providers incentives collide or settle.

Matchmaking or resource brokering systems use requirements and prefer-
ences from both sides [FTF+02, CFK04, CIL+07]. The design obtained in this
chapter builds on comparable requirements and preferences from decision-taking
participants. It can use matchmaking or brokering to implement some of its el-
ements. Section 2.2 gives detailed comparisons with related designs.

In systems not primarily designed with participants autonomy in mind, ser-
vices are added in the attempt to centrally handle every possible constraint
participants might find important [CFK04]. Instead, we separate responsibili-
ties between participants, so that they deal with their own concerns, as opposed
to having them managed by a third party.

2.2.2 Economic models

Economic models have received increasing attention recently. They study
pricing strategies that achieve user objectives such as performance or fairness
with income guarantees for providers [HWZ05, BMB+08]. The problem we ad-
dress is relevant when the contract between users and providers does not entirely
determine the resource allocation process. This is mostly the case in grids where
high level contracts bind together large organizations. Such contracts may or
may not use monetary compensation.

Game theory includes the study of possible strategies and resulting equi-
libria in games with competing participants. It has yield various protocols
in distributed computer systems [CS00, JZ09]. In this area, Multiple Admin-
istrative Domains (MADs) were introduced to design fault tolerant systems.
Participants’ behaviors are given, and the goal is to design the game so that the
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equilibrium coincides with the objective. MADs principles have been used to
design cooperative backup services, peer-to-peer data streaming, Internet and
wireless routing [AAC+05]. Our formalism is the first to use MADs principles
to design grid resource allocation architectures.

2.2.3 Containment in other models

Containment can be used to separate concerns. Various systems introduce
containment with virtual machines to separate users from providers [KFFZ05,
RMX05, RIG+06, GPJ+07]. They evaluate the benefits of virtual machines
in addressing the problems that users may want a different software configu-
rations than the native software of the host, and providers may want to move
execution environment while in use. Our approach yields a new definition of
containment, of which virtual machines are potential implementations, as well
as a new definition of responsibilities.

Abstract State Machines (ASMs) are formal tools that can be understood
as generalizations of turing machines [Gur03]. They are primarily used to spec-
ify complex systems at every level of abstraction and generate tests. High level
ASMs have been proposed as a basis for the specification of grid systems [NS06].
For generality, the authors introduced generic entities called abstract resources,
user mapping and resource mapping. ASMs start by modeling a design. By con-
trast we start by modeling the specific problem of reconciling the participants
diverging objectives. The solution we obtain yields a definition of containers
consistent with abstract resources, that divide resource allocation in the same
two parts, one carried out by users and the other by providers. It is consis-
tent with their model and provides a semantic refinement of their components.
However, we do not express it in ASM terms.

2.2.4 Metascheduling Pattern

The Master-Slave pattern specifies that a master process allocates tasks to
slave processes [BMR+96a]. In addition, the Broker pattern defines a class that
acts on behalf of requesters and hides the details of its action [BMR+96a]. In-
spired from these two design patterns, Metascheduling was an early architectural
pattern for grid resource allocation [Wei98]. It specifies that tasks are submit-
ted to a global meta-scheduler, which in turn submits to local schedulers. As
detailed in chapter 1, this is the pattern used in most grid systems until recently.
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The mainstream infrastructure behind LCG, the Large Hadron Collider
Computing Grid, is an implementation of Metascheduling [BBB+05]. LCG is a
collaboration of academia and scientific communities that aggregates resources
for use primarily by CERN experiments.

In LCG, a task comes with requirements in terms of the software that must
be present on the execution environment. Computing resources are not guar-
anteed. Their type and amount varies according to site policies, their servers,
and the load of other tasks possibly collocated on the same servers.

The central component is the workload management system, which is not
under the user’s nor the provider’s control. It selects a cluster that satisfies
the task requirements, on a site that accepts contracts with the VO 2 involved,
based on access-right policies [And04].

Although the workload management system does not pervade a grid site, it
sets strong terms on site resource management. In practice, the only freedom left
to the resource provider is the choice of a local batch system such as Condor,
LSF 3, PBS 4 or SGE 5 [BHK+00, IGF05, Hum06]. The middleware provides
interfaces to supported batch systems. The only effort to minimize allocation
cost is done by having the batch system statically assign a new task to the
least loaded server on the cluster, that is, the server with shortest task queue.
Providers have difficulties to perform maintenance operations to their resources
because running tasks are directly bound to resources. For critical security
upgrades, user tasks are abruptly discontinued.

The allocation of tasks is a static assignment. Tasks and allocated resources
remain bound until the expiration of one of the two. Resources are divided into
server slots that typically consists in three CPUs, without data isolation, and
assigned by the provider’s batch system.

Other grids such as EGEE 6, NorduGrid, BaltiGrid, Naregi and OSG 7 have
a similar design [Ave07].

Virtual Workspaces isolates user resource in a Metascheduling implementa-
tion, the Globus Toolkit [KFFZ05]. Virtual Workspaces provides a Web-Service
interface to deploy and configure Xen virtual machines (VMs) [BDF+03]. The
targeted users and providers are the same as in scientific grids. Instead of a

2. Virtual Organization, identified as a single user.
3. Load Sharing Facility
4. Portable Batch System
5. Sun Grid Engine
6. Enabling Grids for E-Science
7. Open Science Grid
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server slot, a user is given a workspace, i.e. a VM.
The VM deployment interface is presented to Globus middleware. VM man-

agement is assigned to the user or a third party. This is comparable with
Condor’s recent VM Universe, which lets the user define the deployment of a
VM on a remote host.

The Broker pattern specifies that resources are hidden to the user and task
management is delegated. This is not compatible with Symmetric Mapping.

2.2.5 Pull Mechanism and Late Binding Patterns

Master-Slave was later referred to as Push Mechanism by contrast with
Pull Mechanism where idle resources request tasks [SBP03]. Pull Mechanism
makes allocation resilient to broken resources and removes queues in front of
end resources.

The Late Binding pattern allows the introduction of Pull Mechanism on a
system designed with Push Mechanism. In Late Binding, monitors pushed to
an end resource check the resource status before pulling actual tasks [BHL+06].
The pattern was first implemented by Condor Glide-In in 2001 [TTL02]. Since
2003, major grids are moving towards Late Binding [GDJ08].

AliEn is an example of Late Binding. AliEn is the Analysis Environment
for ALICE, a virtual organization (VO). AliEn uses its own scheduling system
on LCG infrastructure [SBP03].

As a consequence from using LCG, members of ALICE rely on the sites’ best
effort. However, tasks are processed immediately when submitted because a task
is pulled when relevant resources are avaiable. AliEn gives more flexibility to
the ALICE collaboration for task mapping. A job agent monitors every resource
and triggers task selections from ALICE job queue. This mechanism is designed
both to cope with lack of guarantees in LCG SLAs, and to prioritize tasks.

AliEn initiated the emergence of a proper front mapping via Late Binding.
Most major VOs are now implementing a similar system: CDF with GlideCAF,
ATLAS with Cronus and Panda, LHCb with DIRAC, CMS with Glidein-WMS
and other independent large-scale applications may use DIANE [GDJ08].

Symmetric mapping decomposes the allocation in two parts and Pull Mech-
anism is a possible design for both parts. Late Binding separates resource
subscription from task allocation. A system that implements Late Binding im-
plements Symmetric Mapping if the underlying Metascheduling implementation
does not constrain or obstruct the provider.
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2.2.6 Market Based Control and Peer-to-Peer Matching

Patterns

Market-Based Control simulates markets to share resources efficiently among
competing users [Cle96, LB06].

For example Tycoon balances the load across and inside servers according to
user payment [Lai05]. A contract involves the provider with the least expensive
offer. The price of a provider’s resources depends on the load. The provider does
not intervene in the allocation. Commercial services are analogous. Amazon
EC2 8 is a web-service to sell Amazon’s resources on demand. The only provider
is Amazon. In both examples, users have direct access to virtual machines. By
contrast with Market-Based Control, Symmetric Mapping also supports the
cases where the contract between user and provider does not entirely determine
the allocation.

Peer-to-peer Matching is another alternative for contract mapping. In the
absence of a market, participants match and negotiate contacts in a collaborative
manner. For example, a Condor flock is the assembly of computer centers
that borrow hardware resource from one another when needed [ELvD+96]. A
component called the Gateway is hosted by each participant. If a user cannot
assign tasks to its own resources the Gateway examines its pairs. An important
part of Condor is designed specifically for matchmaking and negotiation. The
Matchmaking mechanism is provided through the use of ClassAds [Ram00].
Users and providers define themselves with relevant attribute and write their
requirements with regular expressions on the other participant’s attributes.

2.3 Objectives

This section examines typical user and provider concerns. We identify a
value function in each case. This function quantifies a benefit that a given par-
ticipant can expect from the allocation. We discuss the ability of a participant
to predict or measure value, and optimize it with a schedule. The following
concerns are defined : makespan, sum of weighted flows, energy consumption
and obstruction.

In the following we consider allocations defined as follows: An allocation is
an application that takes a task, a resource and a time, and returns true if the

8. Elastic Compute Cloud, amazon.com
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task is allocated to the resource at that time, false otherwise.

a : Tasks×Resources× Time −→ {true, false}

2.3.1 Minimum makespan

The makespan is the time between submission of the first task and termi-
nation of the last. A user who wants all tasks to finish as soon as possible
wants to minimize the makespan. This is the case if the user launches a single
embarrassingly parallel application.

We write m(a) the makespan of allocation a. For a user concerned with
makespan, value(a) = −m(a) is a valid value function.

With identical tasks and identical resources, a simple online greedy algorithm
finds the optimal schedule with constant complexity. It buffers tasks as they
come. Whenever a processing unit is free, it assigns a waiting task to run until
termination.

In a model often used for scheduling, a task t ∈ Tasks has a length lt, a
processing unit r ∈ Resources has a performance pr, and the execution time of t
on r is lt/pr. The resulting problem is the Multiprocessor Scheduling Problem.
No tractable algorithm finds the exact optimal schedule. However, achieving
near-optimality with known error is tractable [AMZ03, MKK+05].

With less loss of generality a task t ∈ Tasks has a number of instructions
s(t) ∈ N. An allocation a ∈ A yields an instruction rate ρ(t, a, τ) for task t

at time τ . The instruction rate is the number of instructions per second. The
makespan m(a) is written

m(a) = max
t∈Tasks

min{τ ′ ∈ Time|
∫ τ ′

0

ρ(t, a, τ)dτ ≥ s(t)}

The estimation of ρ(t, a, τ) is reputedly a difficult problem. Precise analysis of
computing performance, that takes into account the affinity between tasks and
resources, is in its inception. It is addressed in areas of real time systems and
heterogeneous computing [XZQ00, KL01, SOBS04, PRV08].

2.3.2 Minimum sum of weighted flows

A task flow is the time between task submission and termination. A user
u ∈ X who wants every task to finish as soon as possible wants to minimize
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a sum of weighted flows [LSV06]. This is the case when the user is actually a
collaboration of individuals who launch batch computations over time.

For t ∈ Tasks submitted at time τt, if F (t, a) is its flow given allocation
a ∈ A:

F (t, a) = min{τ ′ ∈ Time|
∫ τt+τ

′

τt

ρ(t, a, τ)dτ ≥ s(t)}

If wt the priority of task t, the sum of weighted flows is written

w(a) =
∑

t∈Tasks

wtF (t, a)

valueu(a) = −w(a) is a valid value function for user u.
Sum of weighted flows minimization suffers the same problems of tractability

and modeling as makespan minimization.

2.3.3 Minimum energy consumption

The operation of a computing resource affects its power consumption. Power-
manageable processors and devices exhibit different states which limit at dif-
ferent levels the range of their operation and their power consumption. State
transitions require some time and consume energy, too. Power management
policies determine the conditions of state transitions in an attempt to min-
imize the energy consumption of a computing resource under workload con-
straints [BR04, RRT+08]. We write µ(r, a, τ) the resulting power consumed by
r ∈ Resources at time τ given the allocation a ∈ A and the power management
policy.

Part of the consumed power dissipates in heat. Cooling devices are operated
according to the temperature in their zone of influence. The operation of a
cooling device also consumes power. Thermal management policies determine
the level of operation of each cooling device in an attempt to maintain acceptable
temperatures with minimum energy consumption [BF07, TGV08]. We write
µ(d, a, τ) the resulting power consumed by cooling device d ∈ Devices at time
τ . We write Zd ⊂ Resources the resources that have thermal transfers with d.

A provider p ∈ X concerned with energy consumption wants to minimize
e(a), or maximize valuep(a) = −e(a), where

e(a) =
∫ +∞

0

( ∑
r∈Resources

µ(r, a, τ) +
∑

d∈Devices

µ(d, a, τ)

)
dτ
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µ(d, a, τ) depends on µ(r, a, τ ′) ∀τ ′ ≤ τ and for all resource r in the zone of
influence of d.

µ(d, a, τ) is difficult to know because thermal transfers are involved. In a
simple representation, thermal transfers are considered instantaneous. Under
this hypothesis, the power consumed by a cooling device is a function of the
power consumed in its zone of influence at the same time. If this function is
replaced with its linear approximation, ∃αd, ∀a ∈ A, ∀τ ∈ Time

µ(d, a, τ) = αd
∑
r∈Zd

µ(r, a, τ)

With this simplification,

e(a) =
∫ +∞

0

∑
r∈Resources

µ(r, a, τ)

1 +
∑

d∈Devices|r∈Zd

αd

 dτ

In the simplest formulation, a resource r is a server. Its states are up or sleep.
On up mode, r consumes power µu(r). A resource r has a power efficiency η(r)
where

η(r) = µu(r)

1 +
∑

d∈Devices|r∈Zd

αd


In the simplest greedy algorithm, tasks are taken in order of starting time.

The server r with highest η(r) which is not already busy is assigned the next
task. A server which is not assigned a task for a sufficiently long time is put in
sleep mode.

In fact the energy consumption of a server does not only depend on its
run/sleep status. It depends on the workload applied to its processors and each
of its devices. A provider who already carries out power management of its
resources and thermal management of its cooling devices will probably want to
carry out energy-aware resource scheduling because it is the last piece of control
to get full responsibility of energy expenses.

2.3.4 Minimum obstruction

We call obstruction the event in which an external user blocks resources that
the provider wants to use internally or access for maintenance. It is not always
possible for the provider to pre-empt resources or foresee when resources will
be needed internally. The cost of obstruction can be quantified based on the
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eagerness of provider p to free some resource at a given time:

eagerp :

{
Resources× Time −→ R+

(r, τ) 7−→ eagerp(r, τ)

eagerp(r, τ) = 0 if the provider does not need r at τ . Otherwise, eagerp(r, τ) >
0 and eagerp(r, τ) indicates the relative benefit from monopolizing r at τ . The
measure of eagerness is entirely up to the provider.

A provider p who wants to minimize obstruction wants to maximize the
following value function.

valuep(a) =
∑

r∈Resources

∫ +∞

0

eagerp(r, τ)(1− δa(r, τ))dτ

Where δa(r, τ) = 1 if ∃t ∈ Tasks|a(t, r, τ) = true, 0 otherwise.
Very often eagerp(r, τ) is not known before τ , and the algorithm to maxi-

mize valuep(a) is an online algorithm.

2.4 The Symmetric Mapping pattern

In order to separate the concerns of resource providers and resource users,
we define an architectural pattern: Symmetric Mapping.

2.4.1 Overview

Symmetric Mapping is intended to design architectures that perform re-
source allocation in a way that satisfies both resource providers and resource
users when their interests differ.

The allocation of tasks to resource determines the satisfaction of both pro-
viders and users. In general, their incentives conflict. For example the most
power-efficient server is not always the fastest. An allocation directed by a de-
cision system under user control can result in high resource supply costs and an
allocation directed by a decision system under provider control can result in low
user-perceived resource value. Instead of compromising with them, Symmetric
Mapping builds on these differences from the system design.

The principle of Symmetric Mapping is to divide resource allocation in three
parts: contract mapping, front mapping and back mapping (fig 2.1).
Contract mapping consists in the match between users and providers and the
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Tasks Resources

Tasks ResourcesContainers

Users ProvidersContract 
mapping

Front 
mapping

Back 
mapping

Figure 2.1: Mapping decomposition.

issue of containers that specify elementary resource transactions and subdivide
higher level contracts. Mapping a task to a resource contributes to fulfilling a
contract. It involves a container. Symmetric Mapping specifies that providers
map their endorsed containers to their physical resources (back mapping) and
users map their tasks to their subscribed containers (front mapping).

2.4.2 Definition

The Open Group Architecture Framework 9, a standardization consortium,
identifies a terminology that can be used to define architectural patterns. Ac-
cording to the consortium, a pattern is defined with a name, an intent, precon-
ditions, forces that play a role towards the intent, the solution, postconditions
and rationale.

– Name: Symmetric Mapping
– Intent: Separate the concerns of providers and users and dispatch their

responsibilities accordingly, so that their actions do not conflict and yield
to the independent optimization of their respective concerns.

– Preconditions: Participants are administratively independent. Users need
to run tasks and providers propose resources for tasks to run. They are
bound by implicit or explicit contracts which justify their exchange. They
are supposed to have rational and selfish behaviors. They have some idea
of their objective and some knowledge on how to reach it.

– Forces: The greater the amount and heterogeneity of resources, tasks,
and participants objectives, the better the opportunity to optimize the
objectives [KSS+07].

– Solution:

1. Insert intermediate entities between tasks and resources. These enti-
ties are called containers. A container holds attributes of a resource
transaction. In conjunction with the actual resources involved in the

9. opengroup.org
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transaction, it determines a cost for the provider. In conjunction
with the tasks involved in the transaction, it determines a revenue
for the user.

2. Decompose the mapping of tasks to resources into the mapping of
tasks to containers and the mapping of resources to containers.

– Postconditions: Users and providers match and issue containers. This is
the first part of the allocation called contract mapping. Providers map
resources to containers. This is another part of the allocation called back

mapping. Users map tasks to containers. This is the third part of the
allocation called front mapping.

– Rationale: If given appropriate responsibility, a participant will reach his
own objective better than anyone else on his behalf.

2.4.3 Practical perspective

Participants

Provider

User

Container

Resource

Task

Figure 2.2: Participants, tasks, resources and containers.

Figure 2.2 features participants in a large particle physics grid. Resource
providers are represented on the left hand side plane. The names correspond
to institutions involved in the analysis of high energy physics data: CERN
(Switzerland) is called the Tier0. It is where data is generated and stored in
the first place. FZK (Germany), IN2P3 (France) and RAL (Great Britain)
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are example Tier1 ’s, where data is replicated [Rob06]. Tier0 and Tier1’s are
computer centers where a large part of the analysis takes place. At the time of
writing, CERN has 7192 CPUs, IN2P3 3356, FZK 8340, and RAL 4016.

Resource users are represented on the right hand side plane. These are
instances of virtual organizations (VOs): Babar, CDF, LHCb, ALICE, ATLAS,
CMS. Each of them is a community of researchers whose data is generated by
a particle physics detector. The VO names are detector names. Members of
a VO analyze data and therefore generate tasks that run on the LCG. A VO
is considered a single user because its members report to the same institution,
have common objectives and the same applications.

In Contract mapping, users and providers define containers. In Back map-
ping, providers select resources to back their containers, and in Front mapping,
users select tasks to use their containers. A container is backed by one or an
assembly of resources from a unique provider. It supports one or several tasks
from a unique user.

Containers

Resource exchange between two autonomous institutions is the result of a
contract between them. Grid sites engage in long term support for chosen vir-
tual organizations. Symmetric Mapping requires that the contract that sets the
terms of this support is made explicit. In addition, these contracts must be
divisible into non-redundant subcontracts called containers. Containers must
not allow resource oversubscription or undersubscription, and must be described
with enough precision to have a determined value as perceived by each partici-
pant.

Therefore containers are specific kinds of Service Level Agreements (SLAs)
[CIL+07]. SLAs typically specify the type and amount of subscribed resources
and their lifetime, as well as constraints on the workload. Sometimes SLAs can
be defined directly in terms of Quality of Service guarantees, which directly
determine perceived values [RCAM06].

If relevant to determine the expected perceived value, container descrip-
tions may include specifications on dedicated memory and cache hierarchy, the
number of dedicated cores, their frequency, their optimization logic, network
bandwidth, disk space, bandwidth and latency. Software configuration also be-
longs to resource specifications, potentially including operating system flavor,
compilers and interpreters and their versions, and available administrative util-
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ities.
The implementation of a container may or may not force participants into

complying with its specifications. A Condor sandbox pins to one processor but
does not restrict the use of memory, whereas platform-level virtual machines do.
Both do not constrain the provider [TTL02, BDF+03]. At least each partici-
pant must be able to check for compliance with specifications. Trust is usually
necessary and mechanisms like reputation facilitate it.

Contract mapping

The process by which users and providers agree on containers requires search
and decisions supervised by a neutral third party or performed by a peer-to-peer
mechanism [RLS98]. It can be based on a market, real or simulated.

Contract mapping is the match between a user and a provider and the issu-
ing of containers that bind them. Symmetric Mapping specifies that contract
mapping is separated from the rest of the allocation. Contract mapping is a
function:

Front and back mappings

Containers leave adequate flexibility on both sides. A user independently
schedules its tasks and a provider its resources.

Symmetric Mapping respects the possibility that users schedule their tasks
according to their objective and their knowledge on how to achieve it. In ad-
dition, users can adapt to unplanned task behaviors and faulty resources by
dynamic reallocation, or checkpointing and migration.

To the provider, a container is non obstructive. It clearly isolates user ac-
cess and limits the provider’s commitment. In addition, a container is loosely-
coupled to the provider’s resources. While containers constrain resource types,
providers choose physical resources. Since commitments are known in advance,
resource consolidation can be planned [PZU+07]. Since back mapping is dy-
namic, providers can freely administrate their resources, grant access to local
users or for regular maintenance operations, and react to some light cases of
resource faults.



CHAPTER 2. MAD RESOURCE ALLOCATION 76

2.4.4 Relevance of Symmetric Mapping

Whether Symmetric Mapping should be used instead of another design must
be decided on a case by case basis. Relevant considerations include:

Autonomy. The more autonomous providers are from users, the more useful
Symmetric Mapping is with regards to Metascheduling or Late Binding.

Expertise. Whether users allocate their tasks manually or use a decision sys-
tem, the relevance of Symmetric Mapping or Late Binding with regards
to Metascheduling depends on their ability to perform allocations that
impacts their perceived value of the resources. Similarly, a provider who
does not manage energy consumption or maintain servers will not have
strong diverging requirements.

Liquidity. The more tasks and the more resources, the higher the gain from
optimized allocation on each side.

Trust. Participants must trust a system that addresses their concerns on their
behalf. Otherwise, the use of Symmetric Mapping is relevant.

Sensitivity to cost and value. If users can obtain enough resources at no
charge, and if they do not make a difference between heterogeneous re-
sources, they do not have the incentives that justify the use of Symmetric
Mapping. The situation is similar if providers have fixed operating bud-
gets and if they do not make other use of their resources.

2.5 Accuracy and benefits

In reality, users and providers do not know the precise information and mech-
anisms that determine the value of their objective functions. In addition, accu-
rate optimization might be intractable. These limitations may weigh against an
architecture that gives participants the responsibility of their objectives. The
following simulation suggests that even with approximate knowledge and basic
algorithms, participants benefit from the separation of responsibilities that we
propose.

We consider a user interested in minimum makespan and a provider inter-
ested in minimum obstruction.
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2.5.1 Resources and tasks

For simplicity, a resource is a server, and two tasks do not run together on
a server. ∀t ∈ Tasks, ∀r ∈ Resources, ∃ρ(t, r) ∈ R+, ∀τ ∈ Time,

ρ(t, a, τ) =

ρ(t, r) if a(t, r, τ) = true

0 otherwise

The throughput, ρ(t, r) is the number of instructions per second.
In order to reflect correlations between throughputs on the same server, we

write:
ρ(t, r) = ρc/s(r)ρi/c(t, r)

ρc/s(r) is cycle rate of r, i.e. the number of hardware threads times the fre-
quency. ρc/s(r) reflects the maximum absolute performance of r. ρi/c(t, r) is
the number of instructions of t per cycle of r. ρi/c(t, r) reflects the relative width
of the bottleneck, or affinity between r and t.

In the simulation, we generate a random cycle rate ρc/s(r) for each resource
r, a random task size s(t) in number of instructions for each task t, and a
random affinity ρi/c(t, r) for each couple (t, r).

In practice, participants have an approximate understanding of the mech-
anisms that determine performance. To account for it, we suppose that the
participants do not know ρc/s(r), ρi/c(t, r) and s(t). Instead, they have a no-
tion of task length lt and server performance pr obtained by observation. lt is
the observed execution time of task t in average. The user who owns t knows
lt.

lt =
1

|Resources|
∑

r∈Resources

s(t)
ρ(t, r)

pr is the observed average ratio between a task length and its actual execution
time on the server. The provider who owns r knows pr, the average server
”performance”.

pr =
1

|Tasks|
∑

t∈Tasks

ltρ(t, r)
s(t)

To simulate obstruction to the provider, for every server r we pick random
time periods Tr ⊂ Time such that eagerp(r, τ) = 1 if τ ∈ Tr and 0 otherwise,
and such that P(τ ∈ Tr) is specified in the input of the simulation, for example
10%.
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2.5.2 Algorithms

For a user u and a provider p, the contract Cu,p says: Starting at t0, u
obtains the monopoly on up to Np servers of p as long as u uses these servers
to process any of the Nu specified tasks.

We compare makespan and obstruction in the following cases.

1. A third party controls the allocation, independently from user and provider
objectives, and with less information on resources and tasks.

2. The user controls the allocation, in a rational and selfish manner, with
less dynamic control as the provider would have had.

3. The provider controls the allocation, in a rational and selfish manner.

4. Provider and user control their respective schedules on containers compat-
ible with their contract, and such that a schedule determines the perceived
value.

5. Previous cases are compared with a theoretically attainable measure that
uses exact values of performance, affinity and task size.

The allocation carried out by a third party is implemented as a static random
assignment of the tasks to Np random servers.

With full control, user u picks each task t in order of decreasing lt and assigns
it to a server of minimum cumulated lengths

∑
t′∈Tr

lt′ . Tr ⊂ Tasks is the set
of tasks assigned to server r.

With full control, p starts with the same random allocation as a third party.
When willing to preempt a busy server, p moves its tasks to a random free server
if there is one.

A valid set of containers has Np containers. Each of them says: Starting at
t0, p provides u with the possibility to compute one of the Nu specified tasks with
a performance pc that does not vary so much that it affects the value perceived
by the user. We consider that pc must remain within the minimum standard
deviation of performance σ.

σ = min
r∈Resources

√√√√ 1
|Tasks|

∑
t∈Tasks

(
ltρ(t, r)
s(t)

− pr
)2

Given these containers, user u picks each task t in order of decreasing lt and
assigns it to a container of minimum predicted load (

∑
t′∈Tc

lt′)/pc. Tc ⊂ Tasks
is the set of tasks assigned to container c.
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For r ∈ Resources, we write its neighborhood Nr.

Nr = {r′ ∈ Servers|r′ 6= r and |pr′ − pr| ≤ σ}

p can move containers inside the same neighborhood.
Theoretical attainable values are measured from the following allocation.

Initially, each task t is picked in order of decreasing s(t) and assigned to a
container of minimum size

∑
t′∈Tc

st′ . Whenever a task t starts or the provider
wants to preempt a server r, the corresponding container is moved to the free
server of best throughput ρ(t, r).

2.5.3 Results

Simulations are written in Python using test-driven development methods.
The code is released under Artistic License 2 and available on a public reposi-
tory 10.

Each figure shows the makespan and obstruction on five runs. Each run
corresponds to a set of tasks and resources, and a number of containers. On
all figures, all five runs have the same number of tasks, resources, containers,
statistical distribution of task sizes, cycle rates, instructions per cycle.

Eagerness is identically generated in all cases. On every server, periods
of availability (eagerp(r, τ) = 0) follow a normal distribution of average 10
hours and standard deviation 5 hours. This is a reasonable period, e.g. night
time, during which a server is available without interruption to external use.
Periods of providers potential occupation (eagerp(r, τ) = 1) follow a normal
distribution of 5 hours in average and 2 hours in standard deviation, which is
the time typically needed for server maintenance or interactive use.

Figures 2.3, 2.4 and 2.5 are taken with heterogeneous tasks. s(t) is uniform
from 7, 200 to 18, 000 billion instructions. This corresponds to two to five hours
on a one giga-ops system, which is common to observe for a single submission
on a CPU.

Figures 2.3, 2.4 and 2.6 are taken with heterogeneous resources. ρc/s(r) is
uniform from 1 to 6 billion cycles per second. ρi/c(t, r) is uniform from 0.5 to
0.75 instructions per cycle. This can be observed with performance monitoring
software on commodity servers.

Figure 2.5 is taken with homogeneous resources. Server performance ρc/s(r)

10. code.google.com/p/symmetric-mapping
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Figure 2.3: Small liquidity
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is constant = 8 and ρi/c(t, r) is uniform from 0.5 to 0.55. ρi/c(t, r) denotes the
affinity between task t and server r. Since the processor is always the same,
the task is the only factor of variations and the variation is lower than with
heterogeneous resources.

Figure 2.6 is taken with homogeneous tasks. s(t) is constant = 18, 000 billion
instructions.

Figure 2.3 is taken with 100 tasks, 20 servers and 5 containers, and the others
figures with 300 tasks, 60 servers and 15 containers.

In all cases, the provider obtains a better obstruction than the user or the
third party. The user obtains a better makespan on homogeneous resources
only. In other cases user efforts are not evidently better than random because
task length has little correlation with actual task execution time. The user
advantage in the case of homogeneous resources is marginal. It suggests that
the gain from load balancing in homogeneous computing is marginal compared
to the gain from mapping in heterogeneous computing, taking into account
affinities between tasks and resources.

Data marked Proposal corresponds to the use of containers and the dispatch
of responsibilities between user and provider. The obstruction is similar to
the obstruction obtained by a provider, except with homogeneous tasks. The
makespan is the best, except on homogeneous resources, where user makespan
is the best. In cases where tasks or resources are homogeneous, σ is small and
the number of servers in the neighborhood is limited.

The difference with theoretical values illustrates the effect of an approximate
performance model. These experiments suggest that even when the underlying
models of the participants are approximate, it is valuable to appropriately divide
the allocation and dispatch responsibilities. Benefits increase with heterogeneity
and liquidity.

2.6 The model

This section introduces a new model of resource allocation. This model
provides the foundations of Symmetric Mapping. Its novelty is to consider
dynamic scheduling under constraints.

Section 2.6.1 defines an allocation as the association of a resource and a task
at a given time, specified with a boolean function. Section 2.6.2 splits an alloca-
tion into two functions, one that specifies how resources are scheduled, and one
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that specifies how tasks are scheduled. Section 2.6.3 introduces a specifications
as a predicate that a given allocation must satisfy. Section 2.6.4 defines the
value of an allocation as perceived by a participant.

2.6.1 Allocations

An allocation is an application that takes a task, a resource and a time, and
returns true if the task is allocated to the resource at that time, false otherwise.

a : Tasks×Resources× Time −→ {true, false}

We write F(E,G) the set of applications from set E to set G. Let A be the set
of allocations.

A = F(Tasks×Resources× Time, {true, false})

We call X the set of participants. If u ∈ X is a resource user that owns
Tasksu ⊂ Tasks and p ∈ X is a resource provider that owns Resourcesp ⊂
Resources, we define Au,p the set of allocations that involve u and p.

Au,p=F(Tasksu ×Resourcesp × Time, {true, false})

We define the null allocation Ø ∈ A such that ∀(t, r, τ) ∈ Tasks×Resources×
Time:

Ø(t, r, τ) = false

We define an operation on allocations, that takes two allocations and returns
the allocation that is the combination of the two. We call it their merger.
Operator ∨ between booleans is logical or. For all (a1, a2) ∈ A2, the merger of
a1 and a2 is a1 ∨ a2 such that ∀(t, r, τ) ∈ Tasks×Resources× Time:

(a1 ∨ a2)(t, r, τ) = a1(t, r, τ) ∨ a2(t, r, τ)

The merger of two sets of allocations is the set of all possible mergers with
one allocation from each set. If E is a set, we write P(E) the set of subsets of
E. For two sets of allocations (A1, A2) ∈ P(A)2, we define their merger A1∨A2.

A1 ∨A2 = {a ∈ A|∃(a1, a2) ∈ A1 ×A2, a = a1 ∨ a2}
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2.6.2 Schedules

In this section we divide allocations in parts. Each part is called a schedule.
A schedule involves either tasks or resources but not both. A resource schedule
tells if a given resource is involved at a given time, and a task schedule tells if
a given task is involved at a given time.

A resource schedule returns true for a couple (r, τ) where resource r is as-
signed at time τ ; and a task schedule returns true for a couple (t, τ) where task
t is assigned at time τ .

The goal is to isolate every part of the allocation that interests a single
participant. In this section we introduce a notation that allows to represent
participants as mathematical objects. In fact, a participant is represented with
an function of allocations, or a projector that, given an allocation, returns the
part of the allocation of interest to the participant.

Let u be a user. We define its projector pu

pu :

{
A −→ pu(A)

a 7−→ pu ◦ a

such that:
pu(A) = F(Tasksu × Time, {true, false})

and ∀a ∈ A,∀(t, τ) ∈ Tasksu × Time,

pu ◦ a(t, τ) =

true if ∃r ∈ Resources|a(t, r, τ)

false otherwise

∀a ∈ A, pu ◦ a is the task schedule of allocation a.
Let p be a provider. We define its projector pp.

pp :

{
A −→ pp(A)

a 7−→ pp ◦ a

Such that:
pp(A) = F(Resourcep × Time, {true, false})
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and ∀a ∈ A,∀(r, τ) ∈ Resourcesp × Time,

pp ◦ a(r, τ) =

true if ∃t ∈ Tasks|a(t, r, τ)

false otherwise

∀a ∈ A, pp ◦ a is the resource schedule of allocation a.
Projectors allow to extract the part of the allocation of interest to a user or

a provider. It is also possible to reconstruct an allocation from two projections.
The following shows how a schedule of tasks and a schedule of resources together
define an allocation.

Let u be a user and p a provider. ∀au ∈ pu(A),∀ap ∈ pp(A), we define 11

au∧ap the expansion of au and ap such that ∀(t, r, τ) ∈ Tasksu×Resourcesp×
Time,

(au ∧ ap)(t, r, τ) = au(t, τ) ∧ ap(r, τ)

An allocation is the expansion of a resource schedule and a task schedule. If a
resource is assigned at a given time in the allocation, it is assigned at the same
time in the corresponding resource schedule. If a task is assigned at a given
time in the allocation, it is assigned at the same time in the corresponding task
schedule.

2.6.3 Specifications

Specifications represent ”anything that can be said about an allocation”.
A specification is a predicate. A specification applies to an allocation if the
specification and the allocation are said to match. The match function returns
true when applied to them.

In fact we introduce specifications to represent the contracts between users
and providers that justify the existence of allocations. The allocation matches
the specification that represents the contract between involved users and provi-
ders.

We call Specs the set of specifications. We introduce a function match that
says if an allocation is compatible with a specification.

match : A× Specs −→ {true, false}

A specification can be split into constraints on the schedule of each partici-

11. Operator ∧ between booleans is logical and.



CHAPTER 2. MAD RESOURCE ALLOCATION 88

pant. ∀s ∈ Specs,∀x ∈ X, ∃sx ∈ Specs such that ∀a ∈ A

match(a, s)⇔
∧
x∈X

match(px(a), sx)

If A′ is a set of allocations, for readability we define A′|s the subset of A′ in
which all allocations satisfy s. ∀A′ ∈ P(A),∀s ∈ Specs:

A′|s = {a ∈ A′|match(a, s)}

We introduce the notion of compatibility of a specification with a set of
specifications. A specification can be decomposed into a compatible set of spec-
ifications.

Let s ∈ Specs, S ∈ P(Specs). We say that S is compatible with s, and we
write S � s if and only if ∨

s′∈S
A|s′ = A|s

This formula says that by choosing an allocation for each specification of the
compatible set, such that the allocation satisfies the specification, and by merg-
ing all these allocations, we obtain an allocation that satisfies the initial speci-
fication.

2.6.4 Value

In this section we define the value of an allocation. It is the function illus-
trated in section 2.5. It quantifies the outcome of an allocation as perceived
by a participant, in terms of how well the allocation reaches the participant’s
objective and how beneficial it is for the participant.

Let x be a participant. x is a user or a provider. We write valuex the value
of an allocation for participant x, i.e. how much x gains from the allocation.

valuex : A −→ R

The value of the null allocation is null: ∀x ∈ {u, v},

valuex(Ø) = 0
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The inclusion-exclusion principle applies: ∀x ∈ {u, v}, ∀(a1, a2) ∈ A2,

valuex(a1 ∨ a2) = valuex(a1) + valuex(a2)

− valuex(a1 ∧ a2)

If x is a user, valuex is generally positive because a user gains in having
their tasks processed. If x is a provider, valuex is generally negative because
processing tasks generates a cost.

We write valuex↓ the guaranteed value of a set of allocations, knowing one
allocation of the set will be effective.

valuex↓ :

P(A) −→ R

A′ 7−→ min
A′

valuex

The guaranteed value is the minimum value on the set of allocations that contain
the effective allocation.

2.7 MAD resource allocation problem

This section formalizes the hypotheses and the objective of grid resource
allocation. The formulation is an analogy with the MAD 12 model for fault
tolerance in distributed systems. We propose reasonable hypotheses on the
behavior of autonomous participants in resource allocation. The objective is to
independently optimize the value as perceived by every participant.

2.7.1 Hypotheses

1. Participants are selfish and rational.

2. A user can only schedule its own tasks and a provider can only schedule
its own resources.

3. Participant x ∈ {u, p} is bound in a contract Su,p.

This summarizes as follows. ∀S ∈ P(Specs) compatible with Su,p (S � Su,p as
defined in section 2.6.3), ∀s ∈ S, x ∈ {u, p} chooses the schedule:

x(s) = arg max
px∈px(A|s)

valuex↓
(
px
−1({px})|s

)
12. Multiple Administrative Domains
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It means that a participant chooses a schedule that satisfies her constraints, and
that guarantees the best value as she perceives it, provided specifications are
satisfied.

This hypothesis is a statement of responsibility rather than capability. The
efforts of a participant will be based on her perception of what is or is not
valuable, whether her perception is correct or not. However, participants must
have enough confidence in their own assessments in order to find it worthwhile
to perform their own scheduling.

Su,p is normally negotiated to make sure that some requirements are fulfilled.
If there is a minimum acceptable value vminx for each participant x ∈ {u, p}

∀a ∈ A|Su,p,valuex(a) ≥ vminx

2.7.2 Objective

We want to find an allocation ā that independently maximizes all perceived
values among allocations that satisfy the contracts. For all participant x bound
in contract Sx,

ā = arg max
A|Sx

valuex

2.8 A solution to the MAD problem for grids

We propose a solution to the problem of multiple administrative domains
in resource allocation. This solution relies on the existence of containers. A
container determines the perceived value of the part of the allocation that it
contains.

2.8.1 Containers

Our proposal relies on the existence of a set of specifications that follows
certain properties. We call Containers this set. Containers ⊂ Specs. The
following hypotheses define a notion of containment that allows to solve the
MAD problem for grids.

1. A container forbids over- or under-subscription.

∀c ∈ Containers, ∃Tc ⊂ Time, ∀a ∈ A|c,

∀τ ∈ Tc, ∃(t, r) ∈ Tasks×Resources, a(t, r, τ)

∀τ ∈ Time\Tc, ∀(t, r) ∈ Tasks×Resources,¬a(t, r, τ)
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Tc is called the container lifetime.

2. Among allocations that satisfy a container, schedules determine the per-
ceived value.

∀x ∈ {u, p}, ∀c ∈ Containers, ∀(a1, a2) ∈ (Au,p|c)2,

px(a1) = px(a2)⇒ valuex(a1) = valuex(a2)

3. For every specification, there is a compatible non redundant set of con-
tainers. ∀s ∈ Specs, ∃C ∈ P(Containers) such that

A|s =
∨
c∈C

A|c

and
∀(c1, c2) ∈ C2|c1 6= c2,

∀(a1, a2) ∈ A|c1 ×A|c2, a1 ∧ a2 = Ø

2.8.2 Protocol

If Containers exists, it is possible to independently optimize the value per-
ceived by each participant. This is done by giving participants the possibility to
pick a set of non redundant containers Cu,p ∈ P(Containers) compatible with
their contract: Cu,p � Su,p. From property 3 of Containers, Cu,p exists.

In the following, we show that this protocol yields a unique allocation, which
satisfies the contract and the optimality objective.

2.8.3 Correctness

Theorem 1. The protocol yields a unique allocation.

ā =
∨

c∈Cu,p

u(c) ∧ p(c)

Proof. Let c ∈ C, H = pu
−1({u(c)})∩pp

−1({p(c)}). We will prove that u(c)∧
p(c) =

∨
a∈H

a.

Part 1 We show that u(c) ∧ p(c) ∈ H.
First, we show that u(c) ∧ p(c) ∈ pu

−1({u(c)}), i.e. pu(u(c) ∧ p(c)) = u(c).
Let (t, τ) ∈ Tasks× Time.
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Case pu(u(c) ∧ p(c))(t, τ) = true. ∃r ∈ Resources such that (u(c) ∧
p(c))(t, r, τ) = true. A fortiori, u(c)(t, τ) = true.

Case pu(u(c)∧ p(c))(t, τ) = false; ad absurdum. Suppose u(c)(t, τ) = true.
Necessarily, ∀r′ ∈ Resources, p(c)(r′, τ) = false, i.e. ∃a ∈ Au,p|c, ∀(r′, t′) ∈
Resources × Tasks, a(t′, r′, τ) = false. It means that τ /∈ Tc, and therefore
u(c)(t, τ) = false.

Second, the proof of u(c) ∧ p(c) ∈ pp
−1({p(c)}) is analogous.

Part 2 We show that ∀a ∈ H, a ∨ (u(c) ∧ p(c)) = u(c) ∧ p(c). Let a ∈ H,
(t, r, τ) ∈ Tasks×Resources× Time.

Case (a ∨ (u(c) ∧ p(c)))(t, r, τ) = true; ad absurdum. Suppose (u(c) ∧
p(c))(t, r, τ) = false. It yields a(t, r, τ) = true. It follows (pu ◦ a)(t, τ) = true.
Since a ∈ pu

−1({u(c)}), pu ◦ a = u(c). Therefore u(c)(t, τ) = true. Simi-
larly, (pp ◦ a)(r, τ) = true and therefore u(p)(r, τ) = true. Finally, (u(c) ∧
p(c))(t, r, τ) = true.

Case (a ∨ (u(c) ∧ p(c)))(t, r, τ) = false. It follows a(t, r, τ) = false and
(u(c) ∧ p(c))(t, r, τ) = false.

Part 3 u(c) ∧ p(c) ∈ A|c because

pu(u(c) ∧ p(c)) = u(c) ∈ pu(A)|cu
pp(u(c) ∧ p(c)) = u(c) ∈ pp(A)|cp

Theorem 2. The obtained allocation satisfies a set of specifications compatible
with the contract that binds the participants.

ā ∈ A|Cu,p and Cu,p � Su,p

Proof.
ā =

∨
c∈Cu,p

u(c) ∧ p(c) ∈
∨

c∈Cu,p

A|c = A|Cu,p

Theorem 3. The obtained allocation is optimal.

∀x ∈ {u, p}, ā = arg max
A|Su,p

valuex
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Proof. Let c ∈ Cu,v, x ∈ {u, v}. From hypothesis,

x(c) = arg max
px∈px(A|cx)

valuex↓
(
px
−1({px})|c

)
valuex↓

(
px
−1({x(c)})|c

)
= max
px∈px(A|cx)

valuex↓
(
px
−1({px})|c

)
Let px ∈ px(A|cx),

valuex↓
(
px
−1({px})|c

)
≤ valuex↓

(
px
−1({x(c)})|c

)
min

a2∈px
−1({px})|c

valuex(a2) ≤ min
a1∈px

−1({x(c)})|c
valuex(a1)

∀a1 ∈ px
−1({x(c)})|c, ∃a2 ∈ px

−1({px})|c,

valuex(a2) ≤ valuex(a1)

From containers property 2, ∀a ∈ px
−1({px})|c,

valuex(a) = valuex(a2)

Therefore, ∀a1 ∈ px
−1({x(c)})|c, ∀a ∈ px

−1({px})|c,

valuex(a) ≤ valuex(a1)

It simplifies as ∀a1 ∈ px
−1({x(c)})|c, ∀a ∈ A|c,

valuex(a) ≤ valuex(a1)

Since u(c) ∧ p(c) ∈ px
−1({x(c)})|c,

valuex(a) ≤ valuex(u(c) ∧ p(c))

It means that:
valuex(u(c) ∧ p(c)) = max

A|c
valuex

Since ∀(c1, c2) ∈ C2
u,v|c1 6= c2, u(c1) ∧ p(c1) ∈ A|c1 and u(c2) ∧ p(c2) ∈ A|c2,

(u(c1) ∧ p(c1)) ∧ (u(c2) ∧ p(c2)) = Ø
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Therefore, ∀x ∈ {u, v},

valuex((u(c1) ∧ p(c1)) ∨ (u(c2) ∧ p(c2)))

= valuex(u(c1) ∧ p(c1)) + valuex(u(c2) ∧ p(c2))

It yields:

valuex

 ∨
c∈Cu,v

u(c) ∧ p(c)

 =
∑

c∈Cu,v

valuex(u(c) ∧ p(c))

Finally, let x ∈ {u, p}

valuex

 ∨
c∈Cu,v

u(c) ∧ p(c)


=

∑
c∈Cu,v

valuex(u(c) ∧ p(c))

=
∑

c∈Cu,v

max
A|c

valuex

=
∑

c∈Cu,v

valuex

(
arg max

A|c
valuex

)

= valuex

 ∨
c∈Cu,v

arg max
A|c

valuex


= valuex

(
arg max

A|Su,v

valuex

)
= max
A|Su,v

valuex

2.9 Conclusion

The fact that grids span multiple administrative domains is commonly ac-
knowledged as their distinctive feature among other distributed computing sys-
tems. However, prior to this work, the diverging objectives of the participants to
grid resource allocation were not taken into account in the architectural design.

A new model for grid resource allocation permits to apply the MAD princi-
ples and formalize the problem. It yields a definition of containment that allows
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to separate the concerns of the participants, and independently optimize their
diverging objectives. Specifically, the contracts that bind resource users and
providers are decomposed into containers. Containers split the allocation into
task schedules and resource schedules. A schedule carried out by a participant
determines her perceived value of the container.

The outcome of this model is translated in terms of a new architectural de-
sign pattern, Symmetric Mapping. Symmetric Mapping separates the concerns
of resource users and providers. As a side effect, Symmetric mapping allows to
carry out the mapping of tasks to heterogeneous resources according to affini-
ties between tasks and resources, instead of the traditional load balancing on
homogeneous resources.

For modeling and tractability issues, participants can only approximately
optimize their objective functions. Still, experiments suggest that the proposed
separation of concerns yields better outcome than other distributions of respon-
sibilities, and that the gain from traditional load balancing on homogeneous
resources can be marginal compared to the gain from dynamically mapping
heterogeneous tasks and resources.

The next chapter describes a software framework to implement the Symmet-
ric Mapping pattern based on virtual machines.



Chapter 3

Deploying virtual machines

from descriptions

3.1 Introduction

The Symmetric Mapping pattern divides the allocation in two parts. In one
part resource providers map containers to resources, and in the other part, users
map tasks to containers. While the users part is analogous to the classical task
mapping problem, the providers part is not as usual.

This chapter describes SmartDomains, a system for resource providers to
carry out their part of the allocation, according to the Symmetric Mapping
pattern, and if containers are implemented with virtual machines.

Virtual machines embody allocation constraints that containers can specify.
SmartDomains deploys and controls virtual machines from declarative descrip-
tions. SmartDomains takes care of the operational aspect of back mapping.
It does not cover the decisional aspect, that consists in the choice of physi-
cal resources to back containers. SmartDomains inputs are obtained from the
resolution of container descriptions, where abstract resources descriptions are
resolved in terms of pointers to physical resources.

Section 3.2 compares SmartDomains with related systems. Section 3.3 presents
the choices of underlying software. Section 3.4 explains the operations involved
in managing virtual machines. The following sections present how the system
handles declarative descriptions to carry out virtual machines placement and
configuration (section 3.5), lifecycle management (section 3.6) and configura-

96
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tion attributes lookup (section 3.7). Section 3.8 presents development matters.

3.2 Related systems

A number of advanced enterprise resource management systems interface
virtual machine monitors to make VMs centrally and remotely controllable.
They address the problems of high availability, configurability and differentiated
attribution that a computer center administrator faces to serve local users.

Platform VM Orchestrator 1 manages a wide range of virtualization tech-
nologies to maintain policies between users, groups or applications;

Cassat Collage 2 lets the administrator define high-availability goals and
manages Xen and VMWare to take action in the case of divergence of
the system from its goal state;

OpenQRM , the only open source system in its category, does the same for
Xen [Qlu06].

Fusion Dynamics 3 implements SOA (Service Oriented Architecture) stan-
dards, enforces predefined high-availability service models and lets the ad-
ministrator organize a computing center’s resources via a drag-and-drop
interface.

Several systems present a web based interface for resource users to manage
virtual machines, which is not compatible with the principles of Symmetric
Mapping. Such systems include Virtual Workspaces, and Enomalism. Virtual

Workspaces’ web-service interface implement grid related protocols for user
identification and file transfers [KFFZ05]. Enomalism’s web interface is used
notably in Amazon EC2 (Elastic Compute Cloud). Other systems let a remote
third party operate virtual machines. This is the case for Shirako and COD that
support grid services on virtual machines for the benefits of isolation [ICG+06].
This is also the case for XenoServers and PlanetLab that develop a network
of isolated, distributed environments to enable research on distributed systems
[KMP+04, Fiu06].

To our knowledge, SmartDomains is the only system that manages virtual
machines in the background based on declarative descriptions of their configu-
ration and lifecycle.

1. www.platform.com/resources/datasheets/vmov4-ds.pdf, 2008
2. www.cassatt.com/prod virtualization.htm, 2007
3. www.fusiondynamics.com, 2007



CHAPTER 3. DEPLOYING VIRTUAL MACHINES 98

3.3 Choices

Virtualization is the simulation of resources on software. A virtual machine
exploits actual resources in the back end and presents them as if they were
constitutive of a different system. It presents the interfaces of a different system
to users and other systems.

There are basically two types of virtualization. The lighter is also known
as emulation or operating system level virtualization. It reproduces the appli-
cation programming interface of a different operating system. Such emulators
include QEMU and User Mode Linux for example [Dik01, Bel05]. Platform vir-
tualization is more constrained. It isolates virtual machine resources at a low
abstraction level so that no data exchange between virtual machines can bypass
the simulated interface. Typically, platform virtualization requires to partition
memory and disk. Such systems are called Virtual Machine Monitors. They
include for example Xen and VMWare [SVL01, BDF+03].

Platform virtualization provides appropriate isolation to implement contain-
ers for Symmetric Mapping [BDF+03, GD07]. Virtual machines (VMs) provide
the following benefits.

Software compatibility: By creating a library of customized filesystem im-
ages, virtual machines can easily replicate a wide range of resource con-
figurations, satisfying the specific needs of a wide range of applications.

Resource sharing and performance isolation: By running multiple virtual
machines on the same physical machine, fractional resources can be allo-
cated, with fine-grained control over the resource consumption of each
virtual machine.

Failure isolation: Guest virtual machine failures do not affect the physical
node nor other guests.

Decoupling from back-end hardware: Virtual machines are quickly deployed
and teared down. They can be migrated without substantial effect on the
running tasks they support.

Platform virtualization currently allows for the most varied and precise software
and hardware resources encapsulation. Precision and diversity are important for
containers to divide contracts that bind resource users and providers with de-
termined perceived value on each side. In addition, resource decoupling and
isolation allow for the most significant freedom in mapping resources to con-
tainers.
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In order to preserve the benefits of the pattern, resource virtualization must
not substantially penalize performance. The overhead of a Xen virtual machine
is practically null on pure CPU performance, and generally acceptable on I/O
performance [MST+05].

Back mapping can be seen as the combination of two processes: resource
selection and container deployment. Resource selection is the process of choos-
ing appropriate and available physical resources to endorse specified resource
descriptions. Container deployment consists in actually launching and monitor-
ing containers on selected resources. The system we developed, SmartDomains,
implements the deployment mechanism. It reads combined container descrip-
tions and resource identifications, configures and deploys pools of Xen virtual
machines, and manages their lifecycle according to the descriptions.

SmartDomains is based on SmartFrog, a framework for the configuration, de-
ployment and lifecycle management of distributed software systems, developed
by HP Labs [GGL+03, GPJ+07, GD07]. SmartFrog provides:

– A rich description language to express the configuration of distributed
software components and to specify their orchestration at run-time using
composition and lifecycle components.

– A deployment engine run by a network of SmartFrog daemons that dis-
tribute and resolve component descriptions, register components, initiate
their deployments, check their liveness and propagate liveness and config-
uration changes.

SmartDomains provides specialized components to enable the management
of virtual machines with SmartFrog.

3.4 Managing virtual machines

SmartDomains looks up container descriptions and resource selections and
deploys virtual domains on Linux servers running the Xen hypervisor [BDF+03].
While other VM deployment systems present management interfaces, SmartDo-
mains runs in the background from declarative resource descriptions.

Xen hypervisor adds features to the hardware to support paravirtualization.
Figure 3.1 symbolizes the virtual guest domain on top of a physical host, and
illustrates the terminology. A server is depicted on the top of the figure, and a
virtual domain running on a physical server is shown on the bottom. A virtual
domain is an instance of a virtual machine, namely, a running guest virtual
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Figure 3.1: A layered view of virtual domains

machine. domain0 stands for the native operating system of the physical host.
Using virtual machines as containers and SmartDomains for their deploy-

ment, back mapping takes place as follows.
– A decision mechanism translates generic container descriptions into de-

scriptions of actual resources that the provider owns. The latter includes
names of physical hosts, where to find appropriate OS images, where to
find software packages, virtual IP addresses, reserved amounts of disk
space, memory, CPU share, etc. This decision relies on the provider’s
resource cost model [CIL+07, JB07, BF07]. The decision mechanism is
outside of the scope of this work.

– SmartDomains triggers appropriate actions. These include transfer, ex-
pansion, and configuration of operating system images, mounting images
on appropriate devices, running VMs, notifying when ready and moni-
toring their liveness, and then terminating them, saving and compressing
the images. SmartDomains also monitors VM liveness, and sends the in-
formation to the allocation system. It updates configurations when the
mapping changes.

Once back-end resources are identified, SmartDomains places and configures
virtual machines from resolved container specifications.
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3.5 Placement and configuration

A deployable system is seen as a tree of components. A leaf of the tree
controls a piece of software that needs to be configured, placed, deployed, started
and terminated.

Smartfrog language provides a syntax to define the attributes of a com-
ponent. In the following example, XenDomain defines a generic Xen domain.
MyDomain instantiates a Xen domain by extending XenDomain and overrid-
ing/defining its attributes.

MyDomain extends XenDomain {

sfProcessHost "oplaslim9.cern.ch";

ip "123.45.678.90";

kernel "/boot/vmlinuz-2.6-xen";

...

}

sfProcessHost, ip and kernel are attribute names. sfProcessHost refers to
the backing server, ip refers to the IP address of the guest domain, and kernel

gives the location on the host of the guest’s kernel.
The sfProcessHost attribute is used to place components. When a compo-

nent description is resolved, the component is committed to the daemon running
on sfProcessHost.

A component points to the class that defines its behavior. The class imple-
ments methods invoked when the component deploys, starts, and terminates.

XenDomain extends Prim {

sfClass "ch.cern.openlab.smartdomains.XenDomainManager.class";

}

The code is stored on a code server, accessible from all nodes susceptible to host
a component.

Figure 3.2 illustrates how placement and configuration take place.

1. SmartFrog daemons run on the physical hosts.

2. The administrator submits a description to a daemon.

3. Component descriptions are sent to the daemons on the appropriate hosts.

4. Daemons load the code of local components, configure and deploy them
(here virtual domains).
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Figure 3.2: Domains placement and deployment by SmartFrog daemons.

5. Daemons wait for liveness checks and possible description updates by other
daemons.

Daemons place, configure and run software according to attributes of asso-
ciated component descriptions and methods of linked objects. Components are
organized in a tree to enable appropriate lifecycle management.

3.6 Lifecycle management

In the component’s class, methods that run at different stages of its life-
cycle are called lifecycle methods. They include sfDeploy(), sfStart(), and
sfTerminateWith(). They are invoked respectively at deployment time, start
time, and for termination. In the component tree structure, root and interme-
diate components control the lifecycle of their children components. To do so,
their lifecycle methods invoke their children’s lifecycle methods.

The Compound component is used in the following example to deploy a syn-
chronized pool of Xen domains. When a Compound is deployed, it deploys all
its children in sequence. When it is started, it starts all its children in se-
quence. When it is terminated, it terminates all its children in sequence and
then completes its own termination.

Pool extends Compound {

domain1 extends XenDomain {...}
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domain2 extends XenDomain {...}

...

}

Figure 3.3: Lifecycle management with parent and child components.

Figure 3.3 illustrates the parent-child relationship. A square stands for a method
implementation, and a triangle stands for a method call. Since components are
generally located on different servers, method calls are carried out with Java
Remote Method Invocation (RMI).

SmartDomains components invoke shell commands to perform deployment,
starting and termination actions. A filesystem component uses logical volume
and file management tools common in Linux. A Xen domain component uses
the management interface exported by the Xen hypervisor.

In addition to liveness checks carried out between components, a XenDomain

component spawns a monitoring thread that regularly pings the virtual machine
to check its status and availability. The monitoring thread triggers termination
of the XenDomain component when the virtual machine appears to be out of
reach.

The filesystem image of a virtual domain is defined in a separate component.
This allows for multiple ways to mount a filesystem image. The filesystem
component is not a child of the virtual domain component because the filesystem
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exists prior to the virtual domain. However, the virtual domain needs to refer
to a filesystem. The following description shows how this is done.

LVMStorageBackend extends Prim {

sfClass "ch.cern.openlab.smartdomains.LVMStorageBackend.class";

}

VM extends Compound {

filesystem extends LVMStorageBackend {

baseImage "/data/xen/slc4-smartfrog.img";

}

domain extends XenDomain {

ip "123.45.678.90";

filesystem LAZY PARENT:filesystem;

}

}

SmartFrog provides the PARENT: keyword to refer to an attribute of the parent
component. Alternatively, ATTRIB: looks up in the hierarchy until the following
attribute is found. Keyword LAZY prevents a plain copy of the attribute’s value
or description. Instead, an attribute marked LAZY is resolved at deployment
time only. Since Compound deploys its children in sequence, VM:filesystem is
deployed before VM:domain. Therefore, VM:domain:filesystem refers to the
deployed filesystem.

The same mechanisms that allow for component referencing across the tree
are used to lookup resolved container descriptions.

3.7 Description lookup

A container obtained between a user and a provider makes references to
abstract resources. It is resolved when combined with references to selected
physical resources that the provider chooses to endorse it.

– Container description attributes include names of virtual hosts, assigned
virtual IP address, amounts of memory, disk and swap space, number of
virtual CPUs, paths to store images, type of compression.

– Resource selection attributes include addresses of physical hosts, paths to
filesystems and mount points.

– Permanent attributes configure the inner workings of deployments.
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Figure 3.4: SmartFrog console

The following flat, fully resolved description of a virtual domain lists some at-
tributes directly under the root of a tree.

sfConfig extends Compound {

vm extends VM {

sfProcessHost "physicalHost.cern.ch";

domainName "physicalHost-virtualDomainName";

hostname "virtualHost.cern.ch";

ip "123.45.678.147";

gateway "999.999.1.1";

netmask "255.255.0.0"

ramdisk "no initrd";

memory 512;

volumeSize 5g;

swapSize 512m;

vcpus 2;
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extra "fastboot nousb";

baseImage "/data/xen/slc3-smartfrog.tar";

volumeBaseName "xen-domain-virtualDomainName";

usingExistingVolumes false;

keepVolumes true;

saveImage true;

saveImageName "saved-image.tar.gz";

volumeGroup "vg";

domainLivenessDelay 2000;

domainLivenessFactor 3;

}

}

Figure 3.4 shows the console provided to the resource administrator to view
an up-to-date status of the domains. The administrator can manually modify
attributes to override resource selection or permanent configurations. When
necessary, changes are propagated across the tree.

3.8 Development and tests

SmartDomains is released under Library General Public License (LGPL)
and available on Sourceforge.net, a web based source code repository.

SmartDomains has been used since its early development to create dis-
tributed virtual testbeds for the integration tests of gLite services. gLite is a
major grid middleware distribution [BBB+05]. gLite testers have used a series
of predefined descriptions for every test configuration of interest. Test environ-
ments for grid services do not differ from execution environments for grid jobs.
This use case has driven us to maintain the code, develop several convenient
features, and keep the system operational.

SmartDomains’ own code is tested with both unit tests and system tests.

Unit tests do not involve actual deployments. They verify assumptions on
methods and classes. Unit tests are the fastest tests to run. Since Smart-
Domains is all about controlling systems, we refactored its code to separate
system interaction from internal logic, and we simulated server responses
with mock objects, for maximum coverage by unit tests.

System tests involve actual deployments. SmartFrog provides logger compo-
nents to capture logs from the whole tree. SmartFrog also provides Ant
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Figure 3.5: Html display of unit and system test results

tasks to organize tests and display results on an html page (fig. 3.5).

Performance tests with 48 CPU-intensive benchmark runs did not show sig-
nificant performance overhead. SmartDomains uses CPU time mostly for live-
ness checks. We found 0.25% difference in minimum elapsed times between no
liveness checks and liveness check every 2 seconds, and between checks every 2
and 10 seconds.

We monitored memory consumption in different scenarii (figure 3.6).
The top left hand side diagram shows that an idle daemon uses about 20MB

of memory, and booting and terminating a first VM requires about 3 more MB.
The top right hand side diagram shows that booting 5 VMs simultaneously

uses about 24 MB total, and about 40 seconds.
The bottom diagrams show that part of the memory used for a deployment

is never released. Every successive deployment adds an additional 300kB to
memory usage. We presume that Java will release this memory after a certain
threshold, but we did not test it. Otherwise the daemon should be restarted
after a few hundred deployments.
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Figure 3.6: Memory measurements.

3.9 Conclusion

The Symmetric Mapping pattern described in chapter 2 specifies that provi-
ders deploy isolated resources for users to map their tasks on their own alloted
containers. Once decision algorithms are in place to select physical resources
in compliance with container specifications, it is possible to deploy and manage
virtual machines in the background, as SmartDomains performs this function.
Intervention from the resource provider is possible but not required.

Virtual machines deployed in this manner embody certain specifications that
constrain resource utilization. They help establish the conditions that separate
the concerns of resource providers and resource users. Future virtualization
techniques can be expected to increase precision and maneuverability at a lower
performance cost, and thus increase the number of cases where adequate con-
tainers can be implemented.



Chapter 4

Deploying Permanent User

Services

4.1 Introduction

A grid user accesses a potentially vast set of resources. A typical major
particle physics collaboration can use at any time tens of thousands of nodes
distributed across grid sites anywhere on Earth. To schedule tasks as part
of the Symmetric Mapping pattern, a user needs services to run on neighbor
containers. These services include:

– Configuration nodes that hold data and instructions to configure and ver-
ify user software.

– Allocation nodes replicated for scalability and / or because the allocation
algorithm is inherently distributed.

– Monitors placed close to the tasks to avoid delays when monitoring run-
time information.

– User-specific proxies and communication services installed on every provi-
der site where containers are located. Such services allow communication
through firewalls [SL03].

Subscribed containers are the only support for user services. However, con-
tainers are alloted for a limited time. As a result, users must cope with their
transience.

In fact, the need for permanent services on transient nodes predates the use
of Symmetric Mapping. Powerful grid users, and especially large particle physics
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collaborations, commonly use the Late Binding pattern [GDJ08]. They submit
monitors prior to submitting tasks. The monitors report to user services that
operate actual task submission. Currently, there is no viable solution to support
user services on grid sites. Providers often dedicate a server, the VOBox 1, to
each major user.

To demonstrate that permanent services can be run over transient resources,
we developed SmartCitizens, a deployment system with an integrated election
mechanism.

Figure 4.1: User services distributed across grid sites.

SmartCitizens was formed in consultation with ALICE, a physics collabo-
ration and major grid user. With AliEn (ALICE Environment), ALICE intro-
duced user control for task scheduling on grids [SAB+03]. Figure 4.1 symbolizes
a pool of AliEn resources, supported by nodes from different grid sites. In order
for AliEn agent to seamlessly communicate, a messaging server would run at
the intersection of Alice pool and each grid site.

Section 4.2 identifies prior occurrences of the same problem in distributed
systems. Section 4.3 presents the SmartCitizens mechanisms in terms of dis-
tributed components and their roles. Section 4.4 shows how SmartCitizens
components are placed and services deployed.

1. VO means Virtual Organization. A VO is a collaboration of individuals sharing the
same goals and usage. In Symmetric Mapping, a VO is considered a single resource user.
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4.2 Analogies

The leader election problem occurs when systems following the client-server
paradigm are deployed on nodes subject to disconnection. It applies for instance
to fault tolerant systems and mobile ad-hoc networks.

– Fault tolerant systems are intended to be resilient to node failures. They
re-elect a server node when the previous server fails [FB98].

– In mobile ad-hoc networks, a connection between any of two nodes is
inherently transient. Applications are distributed on groups that respect
desirable connectivity. The resulting grouping is dynamic, and so are the
responsibilities in supporting the applications [MWV00].

Grid computing is a new application as grid users started to take tempo-
rary control over remote nodes exposed to pre-emption. In this case, however,
although node failure is a possibility, the normal process involves notifying the
user before pre-emption. Notifications allow users to designate a new node in
advance to take over responsibility, and migrate the service without experienc-
ing noticeable downtime. Also, nodes can be allocated for several hours or days
before pre-emption. Election is not meant to be as frequent as with mobile
networks.

A leader election algorithm involves participants running the same local al-
gorithm. Any of them can initiate the election, and the algorithm terminates
on a consensus under any circumstances. In addition, it is desirable that a elec-
tion algorithm exhibits fault tolerance itself, and a minimal time and message
complexity [Lan77, TS92, PLL00].

The following sections shows how SmartCitizens integrates node election
with service redeployment for use in implementations of the Symmetric Map-
ping pattern. Responsibilities in the election algorithm are dispatched between
communicating components.

4.3 Components logic

SmartCitizens components are implemented with SmartFrog 2. SmartFrog
processes component descriptions, deploys components, and configures and de-
ploys associated software. In component hierarchies, parent components deploy
their children at specified stages of their lifetime.

2. A framework by HP Labs. www.smartfrog.org.
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Figure 4.2: SmartCitizens components.

Figure 4.2 represents SmartCitizens components responsible for the election.
They consist in Requestors, Candidates and Electors.

Requestors initiate an election. SmartCitizens supports the election of several
nodes to run a specified service. A requestor holds a Role attribute, that
tells the kind of service to place, and a Number attribute, that tells the
number of nodes that must run the service.

Candidates assess the resources on which they run and make the result known
to Electors. A candidate is defined for a specific role. It holds a child
component (RoleComponent), or a reference to it, that configures and
deploys the service once elected. Candidates have the ability to act as re-
questors when notified of incoming pre-emption, or when they detect that
the service is terminated. Indeed, the rolecomponent monitors the service
liveness and terminates when the service terminates. Its termination trig-
gers a method of its parent candidate component. Optionally, candidates
request new elections when they start, in order to challenge the current
service bearers.

Electors evaluate candidates and vote. An elector is operative for a specified
role only. Electors also have the ability to act as requestors when they no-
tice that a service for which they are qualified is unresponsive for too long.
Optionally, evaluators request new elections when they start. By doing so,
they contribute their new observation to revise the current configuration.

SmartCitizens components broadcast messages on selected ports. Messages
do not go through the resource provider’s firewall. In addition, they are meant
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Figure 4.3: Workflow between components.

to be understood only by processes of the same user. They can be encrypted
to avoid interferences. Only components that run on resources of the same
provider, and alloted to the same user, are meant to communicate. This is
where users need to maintain permanent services.

An election involves the communication depicted on figure 4.3.

1. a requestor component broadcasts a Request message. The request mes-
sage carries the role and number attributes.

2. Every candidate component, on reception of the request message, checks if
its role is requested. If yes, it permanently stores n, the requested number
of service instances, and assesses its own resources. Resource assessment
takes into account their appropriateness for the service. The candidate
broadcasts the assessment, along with n, in a Campaign message.

3. Electors collect campaigns for roles on which they are qualified. They per-
manently store n, the requested number of services instances. They rank
candidates according to the order in which they received campaigns, candi-
dates self assessments, and appropriate prior knowledge on the candidates.
Every elector broadcasts a Vote containing its n favorite candidates, the
corresponding assessments, and a weight. The weight typically tells how
extensively the host of the elector has used the service in the past.

4. Candidates collect votes and calculate the weighted sums of received as-
sessments. Each candidate checks its rank against the number of nodes
requested, and deduces whether it is elected or not. Elected candidates
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notify electors with a Claim message.

Since communicating components are controlled by the same user, they are
supposed to collaborate. Resource assessment by candidates and candidates
assessment by electors are supposed correct. To ensure that only one candidate
is elected, a resource assessment and a candidate assessment are integers added
to a high precision uniform random number between 0 and 1.

Requestor, candidate and elector components implement the election of
newly subscribed hosts to take over existing services, or other available hosts to
take over services from terminating hosts. Requestors, candidates and electors
must themselves be carefully placed and deployed on subscribed resources.

4.4 Components placement

The following details a test configuration.
In AliEn, a Computing Element (CE) is an ALICE service that takes care of

ALICE tasks scheduling on a single grid site. A Proxy is a generic name for a
service that allows communications to pass through the grid site firewalls. We
assume ALICE wants to keep one CE and two proxies on every grid site.

Figure 4.4: Components placement on a grid site.

A simple solution shown on figure 4.4 consists in running four components
on every container alloted to ALICE and endorsed by the grid site.

– One CE-Candidate: a candidate component with CE role, with a linked
child component able to configure and deploy a CE.
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– One Proxy-Candidate: a candidate component with Proxy role, with a
linked child component able to configure and deploy a proxy.

– One CE-Elector: an elector qualified to elect CE’s.
– One Proxy-Elector: an elector qualified to elect proxies.

Additionally, two requestors are deployed on the first container that ALICE
obtains on the site, and teared down immediately after they trigger the first
election.

– One CE-Requestor, that requests one CE.
– One Proxy-Requestor, that requests two proxies.

Candidates and electors store service types and instance numbers. They trigger
new elections when containers appear and services gracefully or abruptly disap-
pear. We tested it by bringing up new nodes and killing services or nodes using
the SmartFrog console. Services are accurately re-deployed. The requested
number of services of each type remains. New requestors update the instance
number for given service types.

The code and deployment tests are distributed under Library General Public
License (LGPL) in the election package of SmartDomains development reposi-
tory 3.

4.5 Conclusion

With the Symmetric Mapping pattern, grid users perceive resources as inher-
ently transient. They appear and disappear on globally distributed grid sites.
SmartCitizens demonstrates a solution to maintain permanent services on tran-
sient pools of resources by integrating an election mechanism within a service
deployment system.

The need for a system like SmartCitizens has existed prior to the Symmetric
Mapping pattern, since the use of Late Binding, where grid users attempt to take
more control on their subscribed resources in order to operate their own efficient
task scheduling. SmartCitizens also relieves resource providers from having to
keep dedicated servers under the control of established user, previously the only
solution for users to run their own permanent services on a grid.

The practice of Late Binding is bypassing traditional grid middleware to de-
liver higher performance. This lesson led us to rethink the design of traditional
grid architectures and propose the Symmetric Mapping pattern. SmartDomains

3. sourceforge.net/projects/smartdomains/develop
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and SmartCitizens prove that its inherent difficulties can be solved with ade-
quate frameworks.

The adoption of Late Binding suggests that resource users are best qualified
to schedule their own tasks, and Symmetric Mapping builds on this assumption.

The resulting architecture is beneficial if both resource users and providers
are able to elaborate and implement a strategy for their own benefit. It is a valid
question whether accurate methods exist for both sides. In the following of this
thesis, we do not address computer center administration or power management,
or other concerns that belong to resource providers. Instead, we focus on the
resource users side, whose concern is mainly processing speed.

Due to the independence of providers, subscribed resources appear to users as
heterogeneous clusters. Heterogeneity brings an opportunity for optimizations
[PMP+04, SOBS04]. However, efficient task mapping in this most general case
requires fast and accurate performance prediction. This is the issue that we
address in the second part of this document.



Part 2.
Performance Prediction



Chapter 5

Fast and Light Cache

Performance Prediction

5.1 Introduction

Program performance is affected by the number and performance of available
processing units, program parallelism and data distribution. The performance
exhibited on a single processing unit is determined by its frequency and the stall
time ratio, i.e. the number of cycles spent waiting for data divided by the total
number of cycles. Cache memories temporarily store small amounts of data with
the processor for quick fetching when required. In addition, many processors
look ahead on the code. They predict branches with mostly high success rates,
and they fetch data in advance to registers and cache [Smi98, SCL06b].

Reference streams and caches have been studied extensively in the last
decades [Rau77, Smi82, SSkP+07]. However, performance prediction has been
hindered by failure to quickly and accurately predict cache misses, i.e. the event
that a data is not in cache when required by the processor.

In order to enhance schedulers by taking into account cache resources, pro-
grams must be analyzed quickly. The program analysis overhead must not
overpass the gain in scheduling efficiency.

We present a novel characterization of how a program stresses cache. This
characterization permits fast performance prediction in order to simulate and
assist task scheduling on heterogeneous resources. It is based on the estimation
of stack distance probability distributions. The analysis requires the observation
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of a very small subset of memory accesses, and yields a reasonable to very
accurate prediction in constant time.

Related characterizations are presented in section 5.2. The scope of this work
is defined in section 5.3. The design of the new characterization is explained in
section 5.4 and evaluated in section 5.5.

5.2 Related work

Cycle-accurate simulators return a cache event in response to each instruc-
tion. They require a handle on the application being executed [SSR01] or an
exhaustive trace of the execution [Rot95, Smi82]. Although trace compression
methods exist, these simulators are slow compared to other predictors [JIPH07].

How well a program behaves relative to cache has been explained in the
literature with the notions of program locality [PG95, Mil00, FACA03]. Pro-
gram locality has a variety of descriptions. Reducing the description size has
always been a challenge for performance prediction. Programs can be decom-
posed into building blocks [LMW99, WE00, YMM05]. Resulting descriptions
are still substantial and they do not apply to all kinds of caches.

Monte Carlo performance models represent a program as inter-dependent
statistical generators of stall conditions [KS04, SCL06a, SCL06b]. These models
are fast. The average number of cache misses in a run is correct even for complex
processors. However, the cache misses generators used in these works are still
specific to a cache configuration.

Fast cross-platform cache analysis is usually based on stack distance. Stack

distance is the number of different memory lines accessed between two accesses
to the same line. Stack distances are suited to evaluate fully associative caches
with Least Recently Used (LRU) replacement policy. In this cases, and in the
absence of pre-fetching, cache misses occur for stack distances greater than
the cache size. In addition, stack distances have shown to accurately extend
to set-associative caches with various cache line sizes and replacement policies
[Rau77, Smi82, HS89, GAFN94, BE99].

For prediction, stack distances are usually recorded in a stack distance his-
togram. A stack distance histogram contains the number of occurrences of each
stack distance. Stack distance histograms are widely used for cross-platform
performance prediction [MMC04, PMP+04, HHTE07]. They are lighter than
application traces when the cache line size is known. However, their size is still
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substantial and the whole trace still needs to be collected.

5.3 Scope of the contribution

This section explains the limitations and novelty of the characterization.

Limitations. This characterization aims to predict the number of cache misses.
The cost of a cache miss and the impact of pre-fetching are not studied here, al-
though they are important to simulate and assist cache-aware scheduling. They
must be addressed separately.

Cost of a cache miss. In modern processor architectures the cost of a cache
miss on the process execution time depends on memory latency and band-
width, the number of hardware threads, the quality of branch prediction,
other platform characteristics, and on whether it occurs during direct or
speculative execution. Evaluating the cost of a cache miss is not the con-
cern of this work, which focuses on their number.

Pre-fetching. Modern processors use pre-fetching, a strategy that consists of
loading data to cache before it is required in the program stack. Pre-
fetching takes advantage of spatial locality. Along with efficient branch
prediction, pre-fetching dramatically reduces the number of cache misses.
However pre-fetching is externally scheduled by processors. It does not
belong to cache configuration. The evaluation of how well it filters out
cache misses can be done separately, as in [SCL06b, KS04].

Compulsory cache misses correspond to first-time accessed memory addresses,
that is, to infinite stack distances. Compulsory instruction misses are given
by the binary size and compulsory data misses are given by the data size.
The characterization predicts capacity and conflict misses according to
the standard taxonomy [HP06].

Cache thrashing. occurs when multiple processes share a processor in time.
Each newly scheduled process erases lines from other processes. Cache
thrashing is addressed in the next chapter.

Line size. Stack distance depends on the line size. Prediction is valid on com-
puters with same line size as in the analysis. To our knowledge, this limi-
tation has not been overcome yet. We are working on an analysis method
independent from the line size. It still requires experimental validation
and therefore is not included in the thesis.



CHAPTER 5. FAST AND LIGHT PREDICTION 121

Novelty. We propose a new characterization of how a program stresses cache.
This characterization outperforms current methods for description size, analy-
sis and prediction speed. It accounts for constant prediction complexity and
for the fastest analysis since only small subsets of the application trace need
to be extracted. It permits cross-platform cache performance prediction with
reasonable to very good accuracy.

These performances are required to provide on the fly performance prediction
in order to simulate and assist task scheduling on heterogeneous resource pools.

5.4 A characterization

We propose a characterization based on the estimation of the stack distance
probability distribution. Stack distance is seen as a random variable X. It is
fitted to a combination of well known probability distributions. The obtained
distribution has a cumulative distribution function cdf(x) = P(X ≤ x). If the
estimation is correct, the cache misses ratio is P(X > c) = 1 − cdf(c) where
c is the cache size in number of lines. Therefore, prediction exhibits constant
computational complexity.

In addition we propose a method to refine a simple fit. Cache misses pre-
diction requires to fit correctly only the upper values of random variable X.
Indeed, prediction is only useful for realistic cache sizes. If it can be determined
that no considered cache is smaller than a minimal cache size m, then X must
fit the distribution correctly for values greater than m.

The refinement algorithm is as follows. X is a random variable, in fact a list
of samples. dist represents the parameters of a distribution, i.e. the result of a
random variable fit. Function fit is a regular fit. Function fit′ is the refined
fit.

function bias(X, dist, m) :

for each s in X such that s < m

do

s’ := randomly generated from dist

loop until s’ < m

s := s’

end for

return X

end function
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function fit’(X, m) :

dist := fit(X)

X’ := X

for each refinement

X’ := bias(X’, dist, m)

dist := fit(X’)

end for

return dist

end function

At each refinement, randomly generated values based on the previous estimation
replace the lower samples.

Proof. Suppose that an estimation minimizes the Mean Squared Error ε. εi,j

is the error of estimation at ith refinement on data at jth refinement. εdown

and εup are the contributions of lower and upper samples to the error. Since
estimation n+ 1 minimizes the error on data n+ 1,

εn+1,n+1 ≤ εn,n+1

It yields
εupn+1,n+1 + εdownn+1,n+1 ≤ ε

up
n,n+1 + εdownn,n+1

Since εdownn,n+1 = 0 and εupn,n+1 = εupn,n by construction, it yields

εupn+1,n+1 ≤ εupn,n

The upper samples are better fitted after each refinement.

The remaining of this chapter is an evaluation of the characterization based
on the analysis of SPEC 1 CPU2006 benchmarks. The objective of SPEC
CPU2006 benchmarks is to represent with a limited number of benchmarks the
whole spectrum of modern applications and workloads. We used most of them
in our experiments. The figures of this chapter represent gromacs, lbm, libquan-
tum, gemsFDTD, soplex, dealII, bzip2, gobmk, leslie3d, perlbench, specrand,
libquantum, tonto, h264ref, hmmer, omnetpp, sjeng, calculix. More information
on the benchmarks can be found on the SPEC website.

1. www.spec.org - SPEC is a non profit corporation that maintains relevant benchmarks
to analyze the performance of modern computers.
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Figure 5.1: Stack distance patterns
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Figure 5.2: Stack distance patterns
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Figure 5.3: Stack distance patterns
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Figure 5.4: Stack distance patterns
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Figure 5.5: Stack distance fits.
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Figure 5.6: Stack distance fits.
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Figure 5.7: Stack distance fits.
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5.5 Evaluation

We instrumented SPEC binaries with PIN [PACL05] to obtain instructions
and data load traces. Stack distances are extracted using the trace profiling al-
gorithm [HHTE07]. For simplicity we set line sizes to one, and we instrumented
stack distances between individual references. We developed necessary analysis
tools in Java. They include trace analysis, estimators based on the Method
of Moments for a large spectrum of distributions: Discrete, Uniform, Gamma,
Generalized Pareto (GP) and Half Normal (HN). They include a random num-
ber generator for each of these distributions, and the estimation refinement.
They are released under Artistic License version 2. They come with the whole
data presented in this chapter 2.

The evaluation has three steps. The first step shows the precision to which
stack distances fit a probability distribution. The second step shows the effect
of collecting a limited number of stack distance samples. The third step is
a discussion on using the analysis to predict cache misses of other parts of the
program and with other input data. Figures 5.1 to 5.4 show stack distances on a
representative set of SPEC CPU2006 benchmarks. Diagrams on the left-hand-
side show stack distances between data accesses, and diagrams on the right-
hand-side show stack distances between instruction accesses. Light dots are
stack distances in chronological order. Dashed lines are the outlines. Outlines
are the same values in descending order. The plots of figure 5.1 to 5.4 differ from
histograms. On a histogram, values are on the x axis and the y axis measures
the number of occurrences. On figure 5.1 to 5.4 the x axis is a list of memory
accesses and the y axis measures corresponding stack distances.

In general, outlines are composed of curves and straight segments. An outline
exclusively composed of straight segments indicates that the variable perfectly
fits a discrete distribution. In this case the characterization is equivalent to es-
timating the histogram. It results in a compressed histogram where empty bins
are removed [PMP+04]. To the contrary, a curve indicates that a histogram
would require a high number of bins. When curves exist, fitting a continuous
distribution dramatically reduces the characterization size, for continuous dis-
tributions are determined with typically two or three parameters. Among the
28 SPEC CPU2006 benchmarks, 11 have discrete instruction stack distances,
and three (gromacs, lbm and libquantum) have discrete data stack distances.
In general, a stack distance distribution is the sum of a discrete distribution and

2. code.google.com/p/mtc-project
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continuous distributions.

5.5.1 Stack distance distribution fit
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Figure 5.8: A problematic fit.

Figure 5.8 illustrates the analysis of GemsFDTD. The outline is shown along
with Monte Carlo simulations based on different analysis. For analysis, discrete
parts are filtered out and fitted separately. The remaining samples are fitted to
a continuous distribution. HN fits well the upper part of the curve and GPD
the lower part. However, the whole curve does not fit any single distribution
alone. Gamma and Uniform average the trends. The characterization does not
accurately account for all stack distances in a program whose outline has an
inflexion point. 8 data traces out of the 28 benchmarks fall into this category.
In these worst cases, the refined fit permits to concentrate on the higher stack
distances that account for cache misses.

Figures 5.5 to 5.7 illustrate six representative analysis scenarios. For each
benchmark the best distribution is selected, and the fit is refined. The selection
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can be done automatically by picking the distribution that accounts for the
smallest estimation error. For the three first benchmarks, the estimation is quite
accurate. Refined estimations give the best results. Indeed, outlines have long
tails that bias the estimation of upper values in the absence of refinement. The
precision on the fourth benchmark is impaired by the precision of the discrete
fit. The two last benchmarks are the worst cases, one because of its heavy tail
and the other because of its irregular outline.

In conclusion, the characterization is accurate for most SPEC CPU2006
benchmarks. Stack distances predicted in Monte-Carlo simulations perfectly
match actual values. However, there are impracticable scenarios where the
precision is the order of magnitude.

5.5.2 Analysis speed and prediction accuracy

In section 5.5.1 we considered the ability of a probability distribution to
accurately reproduce stack distances and thus predict cache misses for any kind
of cache. The difference between actual stack distances and the best distribution
is a first contribution to the prediction error. In this section we evaluate the
number of samples required to fit such a distribution. The limited number of
stack distance samples introduces another contribution to the prediction error.
There must be just enough samples to obtain an estimation as close to the best
estimation as the best estimation to the real data. In the following this number
of samples is called adequate.

On figure 5.9, two benchmarks are examined. Actual cache misses ratios
with two different caches are compared to predictions based on different sample
sets. The same characterization is used to predict cache misses for the two cache
sizes.

Although refined fits are better in general, they are not better for all cache
sizes. For soplex data misses prediction with refined fits, the adequate num-
ber of samples is around 28. One sample must be collected every 50,000 data
accesses in memory. This number yields a prediction accuracy of 99%. For
dealII instruction misses prediction, the adequate number of samples is around
211. One sample must be collected every 13,000 instructions, for an accuracy of
99.6%.

In conclusion, accurate predictions are obtained with fast analysis. Less
accurate predictions can be done faster.
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5.5.3 Prediction robustness

In this section we briefly discuss the characterization accuracy to predict
cache misses in the future and with different input data.

Figure 5.10 illustrates the variation of bzip2 stack distances outline on chrono-
logical and sorted views. Samples are taken from millions of consecutive memory
accesses, and the two sample sets are separated by a few seconds. Samples are
represented in chronological order on separate figures (top). Outlines are repre-
sented on the same picture (bottom). With bzip2, outlines show a qualitative
resemblance, but precise prediction is not possible for future cache misses.

Figures 5.11 and 5.12 show the evolution of the outline for four benchmarks.
sjeng does not change its memory access pattern in time. gobmk does not change
with different input data. To the contrary, astar instruction access pattern
changes in time, as well as wrf data access pattern.

In conclusion, future behaviors can be predicted only if the program is known
to follow a certain regularity. For example, scientific computations often involve
the repetitive execution of the same routines [YMM05]. In some cases, as with
gobmk, different input data do not change memory access patterns. The analy-
sis, unnoticeable on the first run of a routine or on the first input data, provides
at worst a rough indication of the cache misses ratio, useful for cache-aware
scheduling. In other cases it predicts future cache misses with very high preci-
sion.

5.6 Conclusion

The contribution of this chapter is a novel characterization of how a program
stresses cache, in terms of the stack distance fit to a probability distribution.
The characterization has a very small size and provides cache misses predictions
in constant time. Its evaluation distinguishes three contributions to the predic-
tion error. One is relative to the appropriateness of a probability distribution
to describe stack distances. The second is relative to the number of samples
used for the fit, and the third is relative to the changes in program behavior.
The worst cases yield reasonable accuracy to simulate or assist scheduling sys-
tems. Many application behaviors are very accurately described by probability
distributions and have enough regularity for the prediction to apply under dif-
ferent circumstances. Fitting a distribution requires the extraction of a very
small subset of the trace. This makes the analysis extremely fast, which is a
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requirement to simulate and assist task scheduling systems.
While this chapter improves the complexity of analysis under the usual hy-

pothesis that context switches do not introduce additional cache misses, the
next chapter removes this assumption and presents a more complex algorithm
that also accounts for cache thrashing.
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Figure 5.11: Different inputs and observation segments.
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Figure 5.12: Different inputs and observation segments.



Chapter 6

Stochastic Analysis of

Cache Thrashing

6.1 Introduction

Processor caches are normally shared by multiple processes. A cache stores
a limited amount of memory for fast access. Processes scheduled on succes-
sive time quanta affect each other’s performance by erasing each other’s cached
items. This produces extra cache misses, i.e. failures to fetch items from cache.
The adverse effect on performance is called cache thrashing. It is in some cases
overwhelming, although reputedly difficult to quantify.

Performance prediction is particularly relevant to application, compiler and
platform developers, and to task schedulers. Developers evaluate cache perfor-
mance with expensive simulations. Online task schedulers require a faster al-
ternative to map tasks to heterogeneous platforms. Cache misses are to a great
extent responsible for performance variability between heterogeneous platforms.
However, former prediction algorithms make simplifying assumptions that ques-
tion their applicability to real cases, as with multiple concurrent processes.

This chapter presents a stochastic approach to cache misses prediction in
presence of multiple concurrent processes time-sharing a fully associative LRU 1

cache.
The method gives a higher bound of the cache miss rate, i.e. the ratio of

cache misses per memory access.

1. A cache with Least Recently Used replacement policy

139
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Figure 6.1: Stack and reuse distance

Section 6.2 places this work with current research. Section 6.3 introduces
useful concepts: age, rank, span, propagation. Section 6.4 shows their relation-
ships with the expected number of cache misses in a time quantum. Section
6.5 presents their calculation based on the stack distance distribution of the
process. Section 6.6 summarizes the algorithm and its complexity. Section 6.7
measures the cost of its hypotheses on a set of benchmarks.

6.2 Position of this work

This section places the present work in its context. Section 6.2.1 introduces
the metric that forms the basis of the analysis. Section 6.2.2 presents related
work on cache simulation and performance prediction. Section 6.2.3 identifies
our contributions.

6.2.1 Stack distance

In order to prepare for the complexity of the analysis, this section goes into
more details than chapter 5 on the definition of the metrics.

The method relies on the following cache design principles. Given that con-
tiguous memory items are often accessed in a row, multiple contiguous items
are fetched from memory at a time, in a line or block. Moreover, given that the
same memory accesses often occur repeatedly, every line is stored on cache (is
cached) when accessed, in order to be available on subsequent accesses. Several
strategies may apply to determine the position of a new line on cache.

Associativity is a design choice. With a n-associative cache, a memory line
can only be stored on n different positions based on its memory address. A
fully-associative cache of size c lines is a c-associative cache. Fully-associative
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Figure 6.2: Misses under cache monopoly

caches make it possible to place a new line anywhere. When the cache is full,
the replacement policy determines which line is selected for eviction.

On fully associative caches with Least Recently Used (LRU) replacement
policy, every new line overwrites (evicts) the least recently used line, considered
one of the least likely to be reused in the future.

The method is based on the estimation of its stack distance probability dis-
tribution. This distribution describes the temporal locality of memory accesses.
An observation can be made for every memory access.

Definition 15 (Stack distance). The stack distance of a memory access is the
number of different lines accessed since the last reference to the requested line,
present and initial references excluded. Stack distance is defined on N∪ {+∞}.
A stack distance of +∞ occurs on the first request of any line [BD01].

A few authors call stack distance circular sequence [CGKS05]. Others call
it reuse distance [SSkP+07]. However, for most authors, reuse distance is in-
cremented for every distinct access to the same line. On figure 6.1, the stack
distance of the last access to line 1 is 3 while its reuse distance is 4 because line
2 was accessed twice between the two accesses to line 1.

Definition 16 (Reuse distance). the reuse distance of a memory access is
the number of memory references since the same line was previously accessed,
present and initial references excluded. Reuse distance is defined on N∪{+∞}.
A reuse distance of +∞ occurs on the first request of any line [BH04].

Stack distance allows to predict the number of cache misses for a process that
runs forever with a dedicated LRU, fully associative cache. An access is a miss
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if and only if its stack distance is greater than the cache capacity. Figure 6.2
represents a stack distance histogram. For each stack distance, the histogram
stores the number of corresponding accesses. The miss rate appears on the
histogram as the ratio of the number of misses by the number of hits.

There is indecision in current literature whether stack distance is a number
of different lines accessed between two successive accesses to the same line, or a
number of different items accessed between two successive accesses to the same
item. Counting lines is useful for prediction but cannot be done by looking at
the process only. Counting items can be done once for all for a process but
is not directly useful for performance prediction. We deliberately choose the
first alternative and assume that stack distance is known. Strictly speaking, it
depends on line size and on spatial distribution of data on memory. To obtain
stack distance from independent analysis of a process and a platform is a work
in progress.

6.2.2 Previous work

Agarwal, Hennessy and Horowitz show in [AHH89] that the impact of mul-
tiprogramming on cache misses is at least substantial and can be predominant.
In [LGS+08], Liu et al. confirm this observation on recent benchmarks and
processors.

A LRU, fully associative cache is comparable to a FIFO (First In First
Out) queue with perturbations. In the absence of memory reads, the first line
written (first in the stack) is the first evicted (first out). Perturbations are
caused by memory accesses that reorder line rankings. After every access, the
accessed line is ranked first and the others are shifted down in the rankings. In
this perspective, the present work is related to queuing theory as described in
[All90]. However, queueing theory is concerned with the time spent in the queue
- the queueing delay, while the present work is concerned with the probability
that a line is in the cache when the program needs to access it.

Strictly speaking, a stack is a LIFO (Last In First Out) queue. Caches
resemble stacks because of the programming artifact that the most recently
used lines (last in) generally have a high probability to be re-used soon (first
out). This observation motivates the use of the LRU replacement policy, that
dictates that the least recently used line in cache is the first line evicted, i.e.
overwritten by a new entry.

Gecsei, Slutz, and Traiger introduced stack distances in 1970 [GST70]. In
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[GAFN94], Grimsrud et al. show that stack distances describes a typical mem-
ory access pattern better than other models still in use today. In 1999, Brehob
and Enbody define the stack distance of a reference as the depth in the stack
from which it was fetched ; and use it for cache misses prediction [BE99]. They
exhibit prediction errors of a few percents when running a single process at a
time.

In [SDR01], Suh, Devadas and Rudolph calculate the average miss probabil-
ity on a finite time quantum, from the given miss probability as a known, convex
function of the number of cached lines. More recently, in [LGS+08], Liu et al.
use a Markov model to simulate the effect of cache thrashing. A three-states
Markov chain describes the last step to obtain a given distribution of data in
cache. Recursion on transition probabilities yields a simple cache simulation
algorithm. To the best of our knowledge, these two works are representative
for the few attempts to predict or simulate context switch misses. Among these
references, other works in cache performance prediction are restricted to the
monotasking case, where the cache is dedicated to a single process.

Stack distance histograms are often used as tasks signatures, i.e. to store
memory access patterns. They can be computed at compile time, by analyzing
loops, and under some assumptions on the regularity of the references within
a loop, as is done in [CP03]. An alternative is to monitor memory accesses at
runtime on a short time period, and suppose that the extracted stack distance
histogram is representative of the full run [MMC04]. In chapter 5, presented in
[GJ08], we fit stack distance to known probability distributions to reduce the
size of the task signature to a few parameters and the complexity of the miss
prediction to a constant complexity, with measured risks on accuracy.

Results are often obtained for LRU, fully associative caches and said to ex-
trapolate to other types of cache. The impact of replacement policy is measured
for example in [GS06]. The impact of cache associativity is detailed in [HS89].
In [LZ09], Liu et al. generalize to associative caches the conditions on stack
distance under which an access yields a cache miss.

6.2.3 Assumptions and contributions

The present work builds on the assumption that stack distance observations
are independent, identically distributed. To the best of our knowledge, this as-
sumption is always done for non cycle accurate cache performance prediction
and simulation. It underlies for example the use of stack distance histograms.
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However, it removes some information contained in a stack distance trace. For
example, it hides the fact that because of program loops, successive accesses
often exhibit regular stack distance patterns. An alternative would be to con-
sider stack distance as a stochastic process, at the expense of a probably more
complex model.

In addition, the stack distance distribution Σ of the process of interest is
supposedly known, and representative of an identified phase of the execution.
Its cumulative distribution function F (k) = P(Σ ≥ k) is given at any point.
The computational complexity of the proposed algorithm is the number of calls
to F .

The method gives the first higher bound of the cache miss ratio in presence
of context switches. It complements prediction methods such as [LZ09] that do
not account for context switches and, therefore, present a lower bound of the
cache miss ratio in multitasking. It is consistent with other analysis of cache
thrashing ([SDR01] and [LGS+08]). However, by contrast with [SDR01], it does
not require prior knowledge or assumptions on the miss probability function,
and by contrast with [LGS+08], it results in a prediction algorithm faster than
a simulator.

We prove that the computation can be done with the initial approximation
of the singular values of a bidiagonal matrix, followed by a computation with
cubic complexity of the cache size. We also indicate, but we fail to prove in the
general case, an exact method, quadratic of the cache size.

A detailed terminology is developed to elaborate from the observation of
stochastic processes. It cements a theoretical frame for the development of
more accurate or faster algorithms.

6.3 Metrics

This section introduces metrics to model the state of a cache as seen by
a process in competition with other time-shared processes. Memory accesses
increment a measure of time relative to the process. At a given time, age and
rank characterize cache lines, and span, characterizes the process by its number
of cached lines. Propagation measures consistency between two time quanta.
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Figure 6.3: Cached lines with their age at the beginning and the end of successive
time quanta.

6.3.1 Age

This section defines time and a line’s age to describe usage recency, and
connects age to reuse distance: the reuse distance of a hit is the age of the
requested line.

Definition 17 (Time). The time of a memory access is the number of previous
memory accesses by the process since the beginning of the time quantum. Time
is defined on Z ∪ {+∞,−∞}. +∞ is the time of a non existent future access,
and −∞ is the time of a non existent past access.

Definition 18 (Duration). The duration of a period is the number of memory
accesses of the process on this period. Duration is defined on N.

Definition 19 (Age). The age of a line is the time minus the time of its last
request (fig. 6.4). Age is defined on N ∪ {+∞}.
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Figure 6.4: Relationship between time, age, rank and span.

Theorem 4. An access i of reuse distance r ∈ N is a hit on the line of age r
at i− 1 if it exists and a miss otherwise.

Proof. If i is the time of the access of reuse distance r, the previous access to
the same line is at time i−r−1. Therefore the age of the requested line at i−1
is r.

6.3.2 Rank

This section defines rank, that indexes lines according to their age, and
connects rank to stack distance: the stack distance of a hit is the rank of the
requested line.

Definition 20 (Rank). A line’s rank is the number of younger lines (fig. 6.4).

Definition 21 (Cache capacity). The cache capacity is the number of different
lines that the process is allowed to have in cache at a given time.
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Lemma 1 (Necessary condition for eviction). If C is the cache capacity, a line
of rank r at i can be evicted at i+ 1 only if

r = C − 1

Proof. LRU replacement policy ensures that r is the maximum rank. Full as-
sociativity ensures that the allocated cache is fully occupied before eviction.
Therefore, the maximum rank is C − 1.

Theorem 5. An access i of stack distance s hits the line of rank s at i− 1 if it
exists and is a miss otherwise.

Proof. Suppose access i is a hit. Let s be its stack distance, l the line hit, and
x its rank l at access i− 1. There were s different lines l1, . . . , ls accessed since
last access n0 to the same line l, x of which have not been evicted at i − 1.
Therefore, x ≤ s.

Ad absurdum, suppose x < s. In this case ∃k ∈ [1, s] such that lk was
accessed at time i2 and evicted a time i3 with i0 < i2 < i3 < i. Therefore, if
rk,3 is the rank of lk at time i3− 1, rk,3 < x. In addition, since i3 is an eviction
and i is not, from lemma 1, rk,3 > x. By contradiction, x = s. Therefore, if i is
a hit, the requested line has rank s.

By contraposition, if there is no line of rank s, n is a miss.

6.3.3 Span

This section introduces the span, the number of lines that have been accessed
by the process, and its evolution in the quantum.

Definition 22 (Active line). A cached line of age a is active at time i if a ≤ i,
i.e. if it has been accessed in the time quantum.

Definition 23 (Active span). The active span is the number of active lines
(fig. 6.4).

Lemma 2 (Active span and rank). If rmax is the maximum rank of active lines
and λ is the active span,

λ = rmax + 1

Proof. Let l be the active line of maximum rank rmax. All λ − 1 other active
lines are younger, therefore rmax ≥ λ−1. All rmax younger lines are also active,
therefore λ ≥ rmax + 1.
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Definition 24 (Maximum span). With C the cache capacity and Σ the stack
distance distribution of the process (only the finite values), the maximum span

c is defined by
c = min(C,maxΣ + 1)

Theorem 6 (Convergence of active span). In a time quantum, the active span
is monotonic increasing and converges into the maximum span almost surely.

Proof. Let c be the maximum span, and ∀i ∈ N, λi the active span at time i.
The sequence (λi)i∈N ∈ NN gives the evolution of active span.

Let i ∈ N.
– If access i+ 1 requests a line active at i, λi+1 = λi.
– If access i+ 1 requests a line not active at i, λi+1 > λi.

Therefore, (λi) is monotonous increasing.
We show that ∀i ∈ N, λi ≤ maxΣ + 1 by recursion on time. λ0 = 1 ≤

maxΣ + 1. We suppose that λi ≤ maxΣ + 1 and examine every case for λi+1.
– If i + 1 requests a line active at i, λi+1 = λi and λi ≤ maxΣ + 1 by

hypothesis. Therefore, λi+1 ≤ maxΣ + 1.
– If i+ 1 requests a line not active at i, let s be its stack distance at i.

– If i + 1 is a hit, let l be the requested line and r its rank at i. From
theorem 5, s = r. Since l is not active at i, l is older than all active lines.
If rmax is the maximum rank of active lines at i, r > rmax. From lemma
2, rmax = λi − 1 and therefore r ≥ λi. Since r = s and s ≤ maxΣ,
λi ≤ maxΣ and therefore λi+1 ≤ maxΣ + 1.

– If i + 1 is a miss, from theorem 5, there is no line of rank s at i. We
show that λi ≤ s ad absurdum. Suppose that λi > s. From lemma 2,
there is a line l of rank rl = λi − 1. Therefore, rl ≥ s. Since there is no
line of rank s, rl > s. By definition 20, there are rl lines younger than
l, and the (s+ 1)th youngest is of rank s. By contradiction, λi ≤ s and
therefore λi+1 ≤ s+ 1.

We showed that ∀i ∈ N, λi ≤ maxΣ + 1. In addition, ∀i ∈ N, λi ≤ C

by definition 23. By the monotone convergence theorem, (λi) converges and
lim
k→∞

λk ∈ [0, c].

Let λ ∈ [0, c − 1] and i ∈ N such that λi = λ. By theorem 5, an access
of stack distance c is a miss, and by lemma 1, it does not yield an eviction.
Therefore,

∀n ∈ N,P(λi+n = λ) ≤ (1− P(Σ = c))n
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Figure 6.5: Memory accesses in a single, isolated time quantum.

By taking the limit:

P
(

lim
k→∞

λk = λ

)
= 0

It remains that:
P
(

lim
k→∞

λk = c

)
= 1

Definition 25 (Time to fill). The time to fill is the time at which the active
span reaches the maximum span. If λi is the active span at time i and ∆ is the
time to fill:

∆ = min{i ∈ [1,+∞]|λi = c}

The time to fill may be greater than the quantum duration. In this case the
active span does not reach the maximum span during the quantum.

Figure 6.5 represents memory accesses in a single, isolated time quantum.
The x coordinate enumerates accesses in chronological order. The y coordinate
shows the stack distance of each access with a vertical bar and the active span
with a horizontal line.

6.3.4 Propagation

This section introduces propagation to measure cache consistency between
two time quanta.

Definition 26 (Propagation). The propagation is the proportion of cached
lines that are not erased between two time quanta of the process of interest.

The evaluation of propagation is not detailed in this chapter.
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Figure 6.6: Propagation observed between successive quanta of a process run-
ning ”alone” on Linux.

Definition 27 (Propagated line). A cached line of age a is propagated at time
i if a > i, i.e. if it was last accessed by the process of interest in a previous time
quantum and not accessed ever since.

On a common operating system, many services run together with user pro-
cesses. Even with a single user process, the propagation between its time quanta
is low, as shown by figure 6.6.

6.4 Cache misses

This section shows how the probability of occurrence of cache misses in a
time quantum is linked to the cumulative distribution function of stack distance
and the metrics defined in section 6.3.
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6.4.1 A typology of cache misses

Lines cached by the process were last accessed either in the current time
quantum or in a previous time quantum. They are either active or propagated.
The request of a line which is neither active nor propagated is a miss.

Definition 28. A blind access is the request of a non active line.

Definition 29. A blind hit is the request of a propagated line.

Lemma 3. If M is the set of misses over a time period, BA the set of blind
accesses and BH the set of blind hits,

M = BA\BH

with BA\BH = {x ∈ BA|x /∈ BH}.

Proof. A miss is the request of a line which is not in cache. Active lines are
in cache, therefore a miss is a request of a non active line, i.e. M ⊂ BA (1).
Propagated lines are in cache, therefore the request of a propagated line is not
a miss, i.e. M ∩BH = ∅ (2). (1) and (2) yield M ⊂ BA\BH .

Conversely, a line which is neither active nor propagated is not in cache.
Therefore, its request is a miss, i.e. BA\BH ⊂M .

6.4.2 Blind accesses count

Theorem 7. Let λi be the active span at i and si+1 the stack distance of i+ 1.
i+ 1 is a blind access if and only if

si+1 ≥ λi

Proof. By lemma 2, all active lines at i have ranks in [0, λi − 1]. Then theorem
5 applies.

Corollary 1. If Σ is the stack distance distribution, i is an access and λi is
the active span at i, the probability that i+ 1 is a blind access is

P(i+ 1 ∈ BA) = P(Σ ≥ λi)

Corollary 2. We write [0, i] the i + 1 first accesses of the time quantum,
[0, i]∩BA the corresponding blind accesses, λk the active span at k, Σ the stack
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distance of the process, c the maximum span, ∆ the time to fill. The expected
number of blind accesses on [0, i] is:

E [|[0, i] ∩BA|]

= E[λi] + (i− E[∆|∆ < i])P(∆ < i)P(Σ ≥ c)

Proof. We use the indicator variable 1X . 1X = 1 in the eventX and 0 otherwise.
For all k ∈ [0, i], let sk be the stack distance at access k. From corollary 1:

E[|[0, i] ∩BA|] = E

[
1 +

i∑
k=1

1sk≥λk−1

]

= E

1 +
min(i,∆)∑
k=1

1sk≥λk−1


+ E

[
1i>∆

i∑
k=∆+1

1sk≥λk−1

]

By theorem 6, k < ∆⇔ λk < c and k ≥ ∆⇔ λk = c.

E

[
1i>∆

i∑
k=∆+1

1sk≥λk−1

]

= E

[
1i>∆

i∑
k=∆+1

1sk≥c

]

= E

[
1i>∆

i∑
k=∆+1

1

]
P(Σ ≥ c)

= E [1i>∆(i−∆+ 1)] P(Σ ≥ c)

= (i− E[∆|∆ < i])P(∆ < i)P(Σ ≥ c)

By recursion on i, we show that

1 +
min(i,∆)∑
k=1

1sk≥λk−1 = λi

If i = 1, λ0 = 1. Suppose that the hypothesis is true for i, we examine case
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i+ 1. If i+ 1 ≤ ∆

1 +
min(i,∆)∑
k=1

1sk≥λk−1 = λi + 1sk≥λk−1

= λi+1

If i+ 1 > ∆

1 +
min(i,∆)∑
k=1

1sk≥λk−1 = λi

= λi+1

6.4.3 Blind hits count

Theorem 8. Let i ∈ N. If i+ 1 is a request of line l with stack distance s, λi
the active span at i and Λi the total span at i,

λi ≤ s < Λi ⇔ l is propagated and not active at i

Proof. This implication is straightforward:

l is propagated and not active at i⇒ λi ≤ s < Λi

We prove that:

λi ≤ s < Λi ⇒ l is propagated and not active at i

Since s < Λi, there is a cached line of rank s at i. From theorem 5, this line is
l. Since its rank s ≥ λi, l is not active. However, l is in cache, and therefore, l
is propagated.

Corollary 3. Let i ∈ N. If i+ 1 is an access of stack distance s, λi the active
span at i, Λi the total span at i, the probability that i+ 1 is a blind hit is:

P(i+ 1 ∈ BH) = P(s < Λi)P(s ≥ λi)

And for i = 0, with ρ the propagation:

P(0 ∈ BH) = ρP(s < Λ−1)
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Figure 6.7: Accesses in successive time quanta

Proof. The general case follows from theorem 8. We show the case i = 0. Access
0 is blind by definition. Supposing that ρ = 1, From theorem 5 it is a hit if and
only if the line l of rank s at −1 is still in cache before the access. l is in cache
at −1 with probability P(s < Λ−1) and l is still in cache before access 0 with
probability ρP(s < Λ−1).

Corollary 4. For i ∈ N, the expected number of blind hits on [0, i] is

E [|[0, i] ∩BH |]

= ρP(s < Λ−1) +
c∑
s=1

i−1∑
k=0

P(Σ = s)P(Λk > s)P(λk ≤ s)

Proof. From corollary 3,

E [|[0, i] ∩BH |]

= ρP(s < Λ−1) +
i∑

k=1

P(Σ < Λk−1)P(Σ ≥ λk−1)

Figure 6.7 shows accesses in non-isolated time quanta. The x axis is time.
On the y axis, vertical bars represent stack distances and the horizontal line
represents active span. Positive x’s are accesses in current time quantum, and
negative x’s (left panel) are accesses in previous time quantum of the same
process. On current time quantum, accesses of stack distance greater than cache
capacity (also known as capacity misses in [HP06]) are shown with dark bars.
Blind accesses are shown with medium-light bars. Depending on propagation,
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Figure 6.8: State diagram of active span indexed by time (λi)i∈N

some are hits and others are misses. Requests of active lines are shown with
light bars. These are hits.

6.5 Stochastic analysis

The metrics defined and used in previous sections are related to stack dis-
tance. This section explains how. They are based on a Markov process. The
stack distance distribution Σ appears in transition probabilities.

6.5.1 Active span

Theorem 9. The active span indexed by time in a quantum, (λi)i∈N, is a
Markov chain with the following transitions:

– ∀k ∈ [0, c− 1], ∀i ∈ N,
P(λi+1 = k|λi = k) = P(Σ ≤ k − 1)
P(λi+1 = s+ 1|λi = s) = P(Σ > k − 1)

– ∀i ∈ N, P(λi+1 = c|λi = c) = 1

Proof. Let i ∈ N. From theorem 7, i + 1 is a blind access with probability
P(Σ ≤ λi − 1). While the active span is not maximal, blind accesses increment
it (proof of theorem 6). Theorem 6 also states that when the active span is
maximal, it remains constant.

Figure 6.8 shows the state diagram of (λi)i∈N.
Let Pf be the transition matrix of (λi)i∈N. Diagonal elements are supposed

non zero. However, they can be chosen as small as necessary.
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We write Fk = P(Σ ≤ k) and F̄k = P(Σ > k)

Pf =


F0 F̄0

. . . . . .

Fc−2 F̄c−2

Fc−1

 =

(
Tf T0

f

0 1

)

Since c ≥ maxΣ + 1, Fc = P(Σ ≤ c) = 1. This defines the 1 × (c − 1) vector
T0

f and the (c− 1)× (c− 1) substochastic matrix Tf .
Since Pf is triangular, Pf is diagonalizable and its eigenvalues are its diagonal

values. Therefore, there is a passage matrix APf
such that A−1

Pf
PfAPf

= DPf

with:

DPf
=


F0

. . .

Fc−1


Since APf

is invertible, ∀n ∈ N, Pfn = APf
DPf

nAPf

−1.
Let τf be the initial distribution of (λi)i∈N, i.e. the list of probabilities of

each state at access 0. Since P(λ0 = 0) = 1 and P(λ0 > 0) = 0, τf = [1, 0, . . . , 0].

Corollary 5. The expected active span is written:

E[λi] =
c∑

k=1

kP(λi = k)

= τfPf
i[1, . . . , c]t

6.5.2 Time to fill

Lemma 4. (λi)i∈N is terminating and c is an absorbing state.

Proof. This is a direct consequence of theorem 6. It can also be seen on Pf .
∀i ∈ [0, c− 1], 0 ≤ Fi < 1 and Fc = 1 therefore,

∃x ∈ Q| lim
n→∞

Pf
n =


0 0

. . .
...

0 0
0 . . . 0 x


Since Pf is stochastic [0, . . . , 0, 1]Pnf 1 = 1. By taking the limit, x = 1.
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As a consequence,

lim
n→∞

DPf

n =


0 0

. . .
...

0 0
0 . . . 0 1

with exponential speed

Theorem 10. The time to fill, ∆, is a discrete phase type distribution.

Proof. ∆ takes values in N. (λi)i∈N is a terminating Markov chain with finitely
many states. The maximum span, c, is its absorbing state. ∆ is the first passage
time to c, therefore, ∆, is a discrete phase type distribution.

Corollary 6. The f∆ be the probability mass function and F∆ the cumulative
distribution function of ∆, i.e. ∀k ∈ N,

f∆(k) = P(∆ = k)

F∆(k) = P(∆ ≤ k)

As a characterization of a discrete phase type distribution:

f∆(k) = τfTf
k−1T0

f

F∆(k) = 1− τfTf
k1

Corollary 7. If ∆ is the time to fill, ∀k ∈ N, Pf the transition matrix of active
span, Tf its sub-stochastic matrix, and Tf = ATf

DTf
A−1
Tf

the diagonalization of
Tf , The expected value of ∆ under the condition that ∆ ≤ i, is:

E[∆|∆ ≤ i] = τfATf

(
i∑

k=0

kDTf

k−1

)
A−1
Tf

T0
f
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Proof. Let f∆(k) = P(∆ = k).

E[∆|∆ ≤ i] =
i∑

k=0

kf∆(k)

=
i∑

k=0

kτfTf
k−1T0

f

= τf

(
i∑

k=0

kTf
k−1

)
T0

f

= τfATf

(
i∑

k=0

kDTf

k−1

)
A−1
Tf

T0
f

6.6 Algorithm and complexity

The following expression gives the number of cache misses in a time quantum
based on knowledge of the stack distance distribution, the number of accesses
in the quantum, and the assumption that no line was propagated from previous
quantum.

Theorem 11. Let n be the duration of a time quantum, λn the active span
at n, ∆ the time to fill, and Σ the stack distance distribution. We write Pf

the transition matrix of the active span, Tf its sub-stochastic matrix, τf =
[1, 0, . . . , 0] of size c, T0

f = [0, . . . , 0, F̄ (c − 2)]t of size c − 1, 1 = [1, . . . , 1]t of
size c− 1, and ∀k ∈ N, F (k) = P(Σ ≤ c) and F̄ (k) = P(Σ > k).

In the absence of propagation, the number of cache misses in the quantum
is:

M = E[λn] + (n− E[∆|∆ < n])P(∆ < n)P(Σ ≥ c)

= τfPf
n[1, . . . , c]t

+

(
n−

n∑
k=0

kτfTf
k−1T0

f

)
(1− τfTf

n1)(1− F (c− 1))

In addition, the computational complexity is the complexity of the implicit-shifted
QR algorithm [DK90] on Pf and Tf , and the rest of the computation is done in
O(c3).

Proof. From corollary 2, M is the number of blind accesses in the time quantum.
Since there is no propagation, there is no blind hit by definition. Therefore, from
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lemma 3, M is the number of cache misses in the time quantum.
From corollary 5,

E[λn] = τfPf
n[1, . . . , c]t

From corollary 6,
P(∆ < n) = 1− τfTf

n1

From corollary 7,

E[∆|∆ < n] = τfATf

(
n∑
k=0

kDTf

k−1

)
A−1
Tf

T0
f

Pf and Tf are bidiagonal. The implicit-shifted QR algorithm can be used
to approximate their singular values.

Once Pf and Tf are diagonalized, Pnf and Tnf are computed in O(c3). There-
fore, E[λn], P(∆ < n) and E[∆|∆ < n] are computed in O(c3).

The QR algorithm approximates the singular value decomposition of a bidi-
agonal matrix. It is iterative, and new iterations are done until enough precision
is reached. In fact, we suspect that use of the QR algorithm is not necessary
and that the overall complexity is in fact in O(c2). This is due to the fact that
the transition matrix of active span Pf and its sub-stochastic matrix Tf are
bidiagonal stochastic. The following presents this faster alternative.

We consider a bidiagonal right-stochastic matrix Mn of size n and we write
its diagonal elements F0 . . . Fn−1 and ∀k ∈ [0, n− 1], F̄k = 1− Fk.

Mn =


F0 F̄0

. . . . . .

Fn−2 F̄n−2

Fn−1


If ∀k ∈ [0 . . . n − 1], Fk = P(Σ ≤ k), then Pf = Mc and Tf = Mc−1. We write
the diagonalization of Mn:

Mn = AnDnA
−1
n

with Dn diagonal and An invertible.
A pattern systematically appears in An and A−1

n , for every n. If Ani,j is the
element at row i and column j of An, and An

−1
i,j is the element at row i and
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column j of A−1
n , ∀(i, j) ∈ [0, n− 1]2, we observe that:

Ani,j =
j−1∏
k=i

F̄k
Fj − Fk

δi≤j

An
−1

i,j =

j−1∏
k=i

F̄k

j∏
k=i+1

Fi − Fk

δi≤j

δ is the Kronecker symbol, i.e. δX = 1 if X is true, 0 otherwise.
Therefore, we express τnAnDAn

−1 where D is diagonal with diagonal ele-
ments ds, s ∈ [0, n− 1], and τn = [1, 0, ..., 0] of size n.

Let v = τnAnDAn
−1 and vj the element at index j in line v.

vj =
j∑
s=0

(
s−1∏
k=0

F̄k
Fs − Fk

)
δ0≤sds

j−1∏
k=s

F̄k

j∏
k=s+1

Fs − Fk

δs≤j

=
j∑
s=0

ds

j−1∏
k=0

F̄k

j∏
k = 0

k 6= s

Fs − Fk

=

(
j−1∏
k=0

F̄k

)
j∑
s=0

ds

j∏
k = 0

k 6= s

(Fs − Fk)−1

Since all members of the expression of the number of cache misses in theorem
11 are on this form, the complexity of the algorithm is in O(c2) for every size
c of bidiagonal stochastic matrix for which the pattern is observed, which we
suspect is all N. However, we have not been able to prove it.
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6.7 Experimental validation

The ratio of cache misses on a single time quantum is representative of the
whole run if all quanta have same number of memory accesses, i.e. duration.
Figure 6.9 shows the duration of successive time quanta for an execution of
the Unix command ls. We observe a wide variability on a logarithmic scale.
However, the effect of the hypothesis that the time quantum duration is constant
is minor compared to the effect of hypotheses on propagation.

The following measurements are taken with Simics, a full system micro-
architecture simulator described in [MCE+02]. The simulated platform is a x86
processor with a LRU, fully associative cache, running a Linux operating system.
Measurements are taken for different benchmarks running ”alone”, i.e. only in
competition with the default background services of the operating system.

Simics returns the actual number of cache misses in the whole run. In
addition, it allows to monitor memory accesses, and it provides access to cache
contents at any step in the execution. We use this information to monitor the
propagation at every time quantum, and we simulate the same memory accesses
on synthetic time quanta with modified propagation and duration. The goal is
to replicate the effect of the simplifying hypotheses made by the algorithm of this
chapter, in comparison with other hypotheses made by existing or hypothetical
algorithms.

The instrumentation of Simics and the simulation of synthetic time quanta
required some programming. The code is written in Python using test-driven
development. It is available under Artistic License 2 on a public repository 2.

Figures 6.10 to 6.14 show the relative number of cache misses under different
assumptions, with regards to the actual number of cache misses.

1. Warm cache is the common hypothesis of prediction algorithms that do
not account for the effect of context switches. A cache miss occurs for
every stack distance greater than the cache capacity.

2. Full propagation means that all lines are propagated between two quanta
of the same process. By contrast with warm cache, a cache miss is counted
at every first access to a memory line.

3. Actual propagation only differs from the observation by the duration
of the time quanta. It is set constant, and equal to the average actual
duration.

2. code.google.com/p/mtc-project



CHAPTER 6. CACHE THRASHING 162

 10

 100

 1000

 10000

 100000

 0  50  100  150  200  250  300  350  400

Nu
m

be
r o

f m
em

or
y 

ac
ce

ss
es

Quanta

Figure 6.9: Number of memory accesses (= duration) of successive time quanta.
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4. Average propagation also sets quantum duration as the average of the
actual value. In addition, it differs from the observation by the propaga-
tion, which is set constant and equal to the average actual propagation.

5. Zero propagation is the result of the calculation proposed by theorem
11. It supposes that the time quantum duration is constant and the prop-
agation is zero, i.e. it counts a cache miss for every blind access.

Figures 6.10 to 6.14 confirm that the expression of theorem 11 gives a higher
bound of the cache miss ratio, and that the monotasking assumption gives
a lower bound. In addition, we observe the distance to the actual value is
qualitatively the same for the higher and the lower bounds. The lower bound,
however, remains much faster to compute, as shown in chapter 5.

6.8 Conclusion

Since the advent of multitasking, context switches have been known to gen-
erate cache misses. However, prior to this work, there has been no mean other
than simulation to predict their impact from the observation of memory access
patterns. The apparent complexity of the analysis justifies this blank with re-
gards to the coverage of the monotasking case, and sustains the opinion that
caches are unpredictable.

Still, the process by which cache warms up at the beginning of a quantum
exhibits convenient properties for analysis. Prior algorithms consider that an
access of stack distance greater than the cache capacity is a miss. This is true
but it only gives a lower bound of the cache miss ratio. In fact, an access of
stack distance greater than the number of lines cached since the beginning of the
quantum is a possible miss, unless the requested line was written in a previous
quantum and not erased by other processes inbetween. Considering that no line
is kept between quanta gives a higher bound of the cache miss ratio. We observe
in exeriments that higher and lower bounds are equally distant to the actual
value.



Conclusion

Synthesis

Architectural patterns appear to largely determine performance outcomes in
an environment where multiple objectives collide. The recent adoption of Late
Binding motivates a re-thinking of grid architectures for performance. With
Late Binding, users bypass grid services developed for interoperability between
the autonomous institutions involved. Users with common applications and
goals find it beneficial to jointly allocate their workload, instead of relying on a
third party service. However, the underlying grid middleware is not primarily
designed for, and unaware of the actual allocation taking place.

We learnt the lesson and propose Symmetric Mapping as the pattern for
next generation production grids. Symmetric Mapping separates the concerns
of grid participants straight from the architectural design.

We imported the notion of Multiple Administrative Domains (MAD) sys-
tems from the area of fault tolerance. Although being a MAD is the definition of
a grid among other distributed computing systems, and is the source of difficul-
ties in allocating grid resources, the MAD problem was not formally addressed
before in the study of grid systems. Indeed, Models based on queuing theory
traditionally used in grid design do not capture the diverging objectives of au-
tonomous participants. Therefore, we had to create a new model that allows to
express multiple constraints and dynamic allocations, and we user it to express
the MAD problem for grids and solved it with a formal definition of Symmetric
Mapping.

The existence of a solution is subject to the ability to divide the overall
allocation into smaller pieces, containers, that isolate resource users from re-
source providers and determine the perceived value on both sides. Under this
hypothesis, the different objectives can be solved independently.
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In order to simulate the benefits of Symmetric Mapping, we identified ob-
jectives of resource users and resource providers. Users are interested in min-
imum makespan or minimum sum of weighted flows, while providers are con-
cerned with energy consumption and obstruction to maintenance and internal
use. Each autonomous participant has specific knowledge and priorities relative
to the mechanisms that determine her perceived value of the allocation. Sim-
ulations suggest that Symmetric Mapping is beneficial even if participants can
only approximately optimize their perceived value.

Virtual machines are appropriate candidates to implement containers. We
proposed a framework that configures and deploys virtual machines, and man-
ages their life-cycle based on declarative descriptions. Providers achieve their
objectives by configuring these pools to be backed with appropriate physical
resources.

We proposed a framework that reacts to changes in nodes availability, elects
new nodes and re-deploys discontinued services, so that users can implement
their own permanent resource management services on the transient containers
that they obtain on a grid.

The first part of our study suggests that it is possible to map tasks directly
and dynamically on heterogeneous servers of a grid. However, the literature
does not provide means to predict the performance of a mapping. Cache misses
are central to processor performance and vary with user loads in a manner
reputedly unpredictable. To start up, we focused on the performance of LRU
caches.

The analysis of memory access patterns is widely used for performance pre-
diction under monotasking. A metric, stack distance, captures the locality of
memory accesses for matching with processor caches. Fitting stack distance
with known probability distributions improves the computational complexity
of existing methods. It allows for predictions with constant complexity, which
is valuable for online matching. Simulations suggest that the computational
improvement does not affect accuracy.

The monotasking hypothesis gives a lower bound on the cache miss ratio.
With multitasking, which is the rule on mainstream operating systems, addi-
tional misses are caused by context switches. A higher bound of the cache misses
overhead from context switches results from a new stochastic analysis of how
the cache warms up, i.e. fills up with useful data. Simulations suggest that the
higher bound is as close as the lower bound to the actual cache miss ratio. The
resulting segment covers the exact cache miss ratio in a finite time quantum,
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potentially representative of performance of the whole execution. This result
fills a blank in performance prediction and helps better inform grid users for a
careful placement of their tasks.

Future work

We suspect that the model we introduced for the problem of multiple ad-
ministrative domains (MAD) in chapter 2 can be applied to other problems and
to resource allocation in other environments as it allows to reason formally on
dynamic and fine grained allocation under constraints.

The MAD formalism may also apply to resource allocation outside of pro-
duction grids. We have exhibited one solution based on specific containment
properties, and other solutions may exist.
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Mapping of resources Mapping of tasks
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System System Algorithms

Service 
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Figure 6.15: Future work.

In addition, this work only opens up the wide question of performance on
computing grids. Further research is needed to complete the study of efficient
and non obstructive grid resource allocation. Along to the completed investiga-
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tions, figure 6.15 represents in dashed rectangles some remaining problems.
Among the two sides of resource allocation that we define, we spare more

efforts on the user side, i.e. on task placement. Processing speed is an obvious
objective we addressed, but energy savings, for instance, are equally important.
The algorithms with which providers select physical resources to support virtual
environments deserve investigation. Energy-aware scheduling can be explored
in view of applications to grids. This would motivate a study on the means
and conditions for seamless server pre-emption, for instance based on resource
monitoring and virtual machine migration.

In the implementation detailed in chapter 3, isolation with virtual machines
provides to some extent the desired containment properties. Instead of resource
isolation, we suspect that mechanisms based on incentives and reputation could
guarantee the same properties with a low cost on performance.

For dynamic scheduling, the potential distance between execution environ-
ments creates additional difficulties. Task migration involves data transfers.
Strategies are needed to reduce their cost. Mechanisms that trigger task re-
placements are not covered in this work.

In chapters 5 and 6 our approach is analytical. We propose to help scheduling
by predicting quickly and accurately the affinity between tasks and processors,
based on a prior analysis of both. Instead, the use of learning techniques based
on recurrent observations is a valid alternative.

Our contributions to performance prediction are limited to the analysis of
cache misses, i.e. failures to fetch data from cache, in isolation from processor
optimizations. Cache misses are determinant for overall processor performance.
However, cache misses are largely mitigated by processor parallelism and opti-
mizations such as prefetching and branch prediction. A model that accurately
predicts overall performance remains to be found.

To conclude, this thesis uncovers the potential significance of further research
in fine-grained resource analysis and management for grid performance. This
is a by-product of our contributions: we point out the real need and current
status; we propose a new perspective and its model; and we provide solutions
to essential parts of the problem.
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